Using the eigenvectors of the quantum harmonic oscillator, i.e., |n >, find the matrix element < 11|P|10 >,where P is the momentum operator. 11mwħ 9mwh 2 O iv5mwħ O iv6mwħ о
Q: Answer the following about an observable that is represented by the operator  = wo (3² + 3²). ħ (4)…
A: The question is asking whether it is possible to find a set of basis states that are simultaneously…
Q: The angular momentum operator is given by Î = î x p. (a) Assuming we are in cartesian space, prove…
A:
Q: Consider the following operators on a Hilbert space V³ (C): 0-i [ LE 1 √2 [ 010 101 010 Ly √2 i 0 0…
A: Required: Possible outcomes and their probabilities.
Q: (4a³ 1/4 T xe-ax²/2, where a = μω ħ The harmonic oscillator eigenfunction ₁(x) = (a) Find (x²) for…
A: Harmonic oscillator eigenfunction Ψ1(x)=(4α3π)1/4 x e-αx2/2 α=μωħ
Q: A quantum gate U performs the following mapping on the Z-basis (standard/computational basis)…
A:
Q: energy levels En of the anharmonic oscillator in the first order in the pa- rameter 3 are given by:…
A: We can use the direct results here of expectation value of x4 in nth state.
Q: f(x + xo) = e' Pxo/h ƒ (x) (where xo is any constant distance). For this reason, §/ħ is called the…
A: The three problems are solved in the steps below.
Q: The wave function of the a freely propagating particle can be described by the following function: V…
A: ψ(x,0) = A-a<x<a0otherwise
Q: Answer the following about an observable that is represented by the operator  = wo (3² + 3²). ħ (4)…
A: The question is asking whether it is possible to write a complete set of basis states that are…
Q: A particle of mass m moves inside a potential energy landscape U (2) = X|2| along the z axis. Part…
A: To determine the units of the constant λ, we can use the given formula for potential energy U(z) and…
Q: A particle with mass m is moving along the x-axis in a potential given by the potential energy…
A: The potential energy function U(x)=0.5mω2x2 describes a simple harmonic oscillator in quantum…
Q: Following is a 1D wavefunction that is associated with a particle moving between o and +oo: (x) =…
A: We will use basic principles of QM to solve
Q: In considering two operators that correspond to physical observables, if the operators commute, then…
A: If two operators A and B commute, that is, [A,B]=AB-BA=0, then they share a complete set of…
Q: A system is in an eigenstate |m, l) of the angular momentum operators L2 and L2. Calculate the…
A:
Q: A particle of mass m moves non-relativistically in one dimension in a potential given by V(x) =…
A:
Q: Evaluate the reflection and transmission coefficients for a potential barrier defined by Vo; 0; 0…
A: For simplicity we take potential 0 to "a" .
Q: Evaluate the following expectation values: (a) ⟨ℓ,m1∣Lx∣ℓ,m2⟩ (b) ⟨ℓ,m1∣Ly∣ℓ,m2⟩
A:
Q: Using the continuity condition of an acceptable wavefunction at x = a, find c and d in terms of a…
A: Wavefunction The wavefunction of a particle is a mathematical expression that encodes all the…
Q: Suppose I have an operator Â, and I discover that Â(2²) = 5 sina and Â(sin x) = 5x². (a) Find Â(2²…
A: A^(x2)=5 sin xA^(sin x)=5 x2
Q: #1: Find the time depended wave functions V(x, t) = ?
A:
Q: b) Prove that the following operators are Hermitian 1) Z 2) Lx
A: (1) Z is z component of position operator. Since position operator r = (X, Y, Z) is hermitian.…
Q: The Hamiltonian operator Ĥ for the harmonic oscillator is given by Ĥ = h d? + uw? â2, where u is the…
A:
Q: Which function is an eigenfunction to the operator = k ax a.) f(x) = sin(ax) b.) c.) d.) e.) f(x)…
A:
Q: Linear operators play an important role in the quantum mechanical description of matter. Which of…
A: We will answer this question by looking at definition of linear operator.
Q: If three operators A, B and C are such that [A, B] = 0, [A,C] = 0,, [B,C] #0 Show that [‚, [B,Ĉ] ]…
A:
Given,
Maxtrix element of momentum operator for harmonic quantum oscillator
We know that
Step by step
Solved in 4 steps
- The Hamiltonian of an electron of mass m in a constant electric field E in one dimension can be written as Ĥ=+eEx where â and are the position and momentum operators, respectively. With initials conditions (t = 0) = 0 and p(t = 0) = 0, which one of the following gives (t) at time in the Heisenberg picture? You may use the commutator [â,p] = iħ. O a. O b. eEt2 2m O C. e Et O d. -eEt O e. eEt² m pt mO Consider the kinetic energy matrix elements between Hydrogen states (n' = 4, l', m'| |P|²| m -|n = 3, l, m), = for all the allowed l', m', l, m values. What kind of operator is the the kinetic energy (scalar or vector)? Use this to determine the following. For what choices of the four quantum numbers (l', m', l, m) can the matrix elements be nonzero (e.g. (l', m', l, m) (0, 0, 0, 0),...)? Which of these nonzero values can be related to each other (i.e. if you knew one of them, you could predict the other)? In this sense, how many independent nonzero matrix elements are there? (Note: there is no need to calculate any of these matrix elements.)Suppose that the wave function for a system can be written as 4(x) = √3 4 · Φι(x) + V3 2√₂ $2(x) + 2 + √3i 4 $3(x) and that 1(x), 2(x), and 3(x) are orthonormal eigenfunc- tions of the operator Ekinetic with eigenvalues E₁, 2E₁, and 4E₁, respectively. a. Verify that (x) is normalized. b. What are the possible values that you could obtain in measuring the kinetic energy on identically prepared systems? c. What is the probability of measuring each of these eigenvalues? d. What is the average value of Ekinetic that you would obtain from a large number of measurements?