Using the definition of continuity and the example below(method for solving the question), show that the following function is continuous q(z) = 1/z^3 at z0 ∈ (0, ∞).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Using the definition of continuity and the example below(method for solving the question), show that the following function is continuous q(z) = 1/z^3 at z0 ∈ (0, ∞).

Example Consider f(x) = 1 1/2 2²1 defined on
Show Hx) is continuous at any at Ri{o}
| f(x) = fl(a)| = | -=-=2 = = = = 2 | = |
Consider
A:
ㅎ
0/2
fa-alla+al
x²²a²
STEP 1 Let a>o. Suppose we
a
=
Ix-all [xx+a)=
22a7
HE
T.e. 12-α| < ²/1/20
39/21 So í Tal < 24₁ < 31a|
i
i
2
TV
a²-a²
x²a²
2
lal
PR\203
1
we need to bound
this
consider x = (2, 30)
8=%2.
1.2.
↓
1x1 <31a1
2
⇓
-
Betal ≤1x1+lal < 5lat
2.
Transcribed Image Text:Example Consider f(x) = 1 1/2 2²1 defined on Show Hx) is continuous at any at Ri{o} | f(x) = fl(a)| = | -=-=2 = = = = 2 | = | Consider A: ㅎ 0/2 fa-alla+al x²²a² STEP 1 Let a>o. Suppose we a = Ix-all [xx+a)= 22a7 HE T.e. 12-α| < ²/1/20 39/21 So í Tal < 24₁ < 31a| i i 2 TV a²-a² x²a² 2 lal PR\203 1 we need to bound this consider x = (2, 30) 8=%2. 1.2. ↓ 1x1 <31a1 2 ⇓ - Betal ≤1x1+lal < 5lat 2.
STEP 2
215/al!
3
1191²
so
[f(c)-flall <loxc-ali
1/1/2-1/²
= |x-a)=1/135810201²3
lal
la).
which is less than & if
8 < 2 191³
10
chorse S= min { lai, slap²³ }
10
to accommodate Stept and stop 2
Transcribed Image Text:STEP 2 215/al! 3 1191² so [f(c)-flall <loxc-ali 1/1/2-1/² = |x-a)=1/135810201²3 lal la). which is less than & if 8 < 2 191³ 10 chorse S= min { lai, slap²³ } 10 to accommodate Stept and stop 2
Expert Solution
steps

Step by step

Solved in 4 steps with 23 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,