Using the AASHTO rigid design procedure, design a pavement for a provincial road with an expected design ESAL of 20 x 106. The pavement structure is to consist of Portland cement concrete with an elastic modulus of 5.0 x 106 psi and a modulus of rupture of 550 psi, and a 12 in. thick unbounded granular material as subbase. The pavement is to be plain jointed and jointed reinforced concrete with tied P.C.C. shoulder and having load transfer devices. The climate consists of a wet season (November-April) and a dry season (May-October). Freezing of the subbase and subgrade is considered negligible. The elastic modulus of the subbase is 20,000 psi during the dry season and 15,000 psi during the wet season. The elastic modulus of the subgrade is 6,000 psi during the dry season and 3,500 psi during the wet season. The subgrade depth to the bedrock is 5ft. It is estimated that it will take a day for water to drain from the pavement and that the pavement will be saturated about 20 percent of the time. Assume that a reliability level of about 95% is required and that the initial serviceability index is 4.0 and the final serviceability index is 2.5. Assume So= 0.35.
Using the AASHTO rigid design procedure, design a pavement for a provincial road with an expected design ESAL of 20 x 106. The pavement structure is to consist of Portland cement concrete with an elastic modulus of 5.0 x 106 psi and a modulus of rupture of 550 psi, and a 12 in. thick unbounded granular material as subbase. The pavement is to be plain jointed and jointed reinforced concrete with tied P.C.C. shoulder and having load transfer devices. The climate consists of a wet season (November-April) and a dry season (May-October). Freezing of the subbase and subgrade is considered negligible. The elastic modulus of the subbase is 20,000 psi during the dry season and 15,000 psi during the wet season. The elastic modulus of the subgrade is 6,000 psi during the dry season and 3,500 psi during the wet season. The subgrade depth to the bedrock is 5ft. It is estimated that it will take a day for water to drain from the pavement and that the pavement will be saturated about 20 percent of the time. Assume that a reliability level of about 95% is required and that the initial serviceability index is 4.0 and the final serviceability index is 2.5. Assume So= 0.35.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning