Using solar units, we find that a star has 4 times the luminosity of the Sun, a mass 1.25 times the mass of the Sun, and a surface temperature of 4090 K (take the Sun's surface temperature to be 5784 K for the sake of this problem). This means the star has a radius of.................... solar radii and is a .................... star (use the classification).
Q: Many of the bright stars in the night sky are highly luminous normal blue stars (such as Acrux), and…
A:
Q: A red giant star might have radius = 104 times the solar radius, and luminosity = 1730 times solar…
A: This problem can be solved using Stefan-Boltzmann law of Black body radiation.
Q: A star has a surface temperature of T = 10,000 K and a radius three times that of the Sun, R = 3R…
A:
Q: A star is known to be moving at 7.87km/s toward the earth. If you observe the spectral line to be at…
A:
Q: A 46M Sun main sequence star loses 1 MSun of mass over 105 years. (Due to the nature of this…
A: Total mass is The main sequence star loses of mass over Find:(a) The solar mass lost in a year.(b)…
Q: If a star has a surface temperature 2 times lower than the Sun's and a luminosity the same as the…
A: Given, If To is the surface temperature of the sun, Lo is the luminosity of the sun Then for the…
Q: If a star has a radius 2 times larger than the Sun's and a luminosity 1/4th that of the Sun, how…
A: Given that Radius of star, R = 2 luminosity of the star ,
Q: Suppose a star has the same luminosity as our Sun (3.8x1026watts3.8x1026watts) but is located at a…
A: as per our guidelines, we can answer only first question. please resubmit rest questions for…
Q: Which spectral line does this likely correspond to?
A: we can use the doppler shift formula to find laboratory wavelength.
Q: A star has a parallax angle of 0.0270 arcseconds and an apparent magnitude of 4.641. The distance to…
A: Write the equation relating Luminosity Lsn and Lst to the absolute magnitude Msn and Mst of sun and…
Q: As we have discussed, Sirius B in the Sirius binary system is a white dwarf with MB ∼ 1M , LB ∼…
A: Given that: The mass of Sirius B: MB ~ 1MThe luminosity of Sirius B: LB ~ 0.024LThe radius of Sirius…
Q: If the main-sequence mass lower limit is 0.08 solar mass and the brightest main-sequence stars are 1…
A: The Main Sequence Stars are a mass sequence, with low mass stars forming an equilibrium with a cool…
Q: For a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into…
A:
Q: Star B has a temperature that is 5 times higher than Star A. How much more energy per second…
A:
Q: Hertzsprung-Russell Diagram
A: In the sky, there are many groups of stars. Some of them are small. while some of them are large.…
Q: Assuming that at the end of the He burning phase of the stellar core (r R_core). Calculate the…
A:
Q: at what wavelength (in nm) will it radiate the most energy? Is this a cool or hot star?
A: According to Wien's displacement law The peak wavelength relation is given as Peak wavelength =…
Q: the parallax angle of a star to be 0.002 arc-seconds. what would the distance be to this star?
A: Given, Parallax angle, p=0.002 arc-seconds
Q: Using the proportionality relationships for stellar luminosity as a function of mass and stellar…
A: Stellar lifetime is directly proportional to Stellar mass. Stellar luminosity is inversely…
Q: Consider two stars on the main sequence, A and B. Star A has a mass of Мо Star B has a mass of 0.2…
A: Solution attached in the photo
Q: At what wavelengths do stars of surface temperates 20 000 K, 10 000 K, and 3000 K have their peak…
A:
Q: Consider a star for which the stellar power per unit area at distance 1 AU from the star is 4.5…
A: Intensity at a distance is Radius of star is Note:The Stefan Boltzmann constant is Find:Surface…
Q: If the surface Temperature of a star was about 11000.0 K instead of 7000.0 K what is the ratio of…
A: Given , temperature of the star is 11000 K instead of 7000 K How many times greater is the magnitude…
Q: If the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength…
A: Concept: "The Wien's displacement law states that the wavelength carrying maximum energy is…
Q: Star 1 and star 2 have the same V-magnitude, V = 7.5. However, they have different B-magnitudes, B1…
A: Given data : Star 1 and star 2 V-magnitude, V = 7.5 B-magnitudes, B1 = 7.2 and B2 = 8.5 d2 = 10d1 To…
Q: What measurements would you make (assuming you have the money, time, & equipment) to determine a…
A: In this question we have to answer what measurements we will make to determine the surface…
Q: asked this question already but the answer was wrong and I couldn't follow along with the work so I…
A:
Q: ou observe a star with a telescope over the course of a year. You find that this star has a flux…
A: .In vertical direction:psinθ=40sin60Psinθ=4032Psinθ=34.6410 free body diagram:
Q: Consider a star for which the stellar power per unit area at distance 1 AU from the star is 3.7…
A: Write the expression for the radiated power at the surface of the star. P=σAT4P=σ(4πR2)T4 Here, σis…
Q: Many of the bright stars in the night sky are highly luminous normal blue stars (such as Acrux), and…
A: Given: The distance between the bright star and the earth is r = 620 light years The luminosity of…
Q: If a T Tauri star is the same temperature as the sun but is ten times more luminous, what is its…
A: The energy radiated by a star per second is known as its luminosity and is directly proportional to…
Q: In a laboratory, the Balmer-beta spectral line of hydrogen has a wavelength of 486.1 nm . If the…
A: Wavelength of (λ°) = 481.6 nm Difference of wavelength ∆ λ = λ- λ° = 486.1- 485.8 = 0.3 nm Speed of…
Q: What is the lifetime on the main sequence of a star whose surface temperature is 6500° K and whose…
A: Denote Stefan’s constant by σ. Evaluate the star’s luminosity (L) from its given temperature (T) and…
Q: The mass-luminosity relation describes the mathematical relationship between luminosity and mass for…
A: Given,mass =4M⊙ Note: We’ll answer the first question since the exact one wasn’t specified. Please…
Q: We will take a moment tổ compare ROw BrigriLIy a Wiite uwan stal sines Compdleu 10 a leu glant 3lai.…
A: Given: Tw=10,000 KTR=5,000 KRw=1100RsunRR=100Rsun we have to find ratio of Luminosity: LRLw=?
Q: If a T Tauri star is the same temperature as the Sun but is eighteen times more luminous, what is…
A:
Using solar units, we find that a star has 4 times the luminosity of the Sun, a mass 1.25 times the mass of the Sun, and a surface temperature of 4090 K (take the Sun's surface temperature to be 5784 K for the sake of this problem). This means the star has a radius of.................... solar radii and is a .................... star (use the classification).
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
- For a star with surface temperature 5,100 K, what is the peak frequency of light from the sun? Write your answer in THz (1012 Hz), to zero decimal places. Take the speed of light to be c=3 x 108 m/s.We will take a moment to compare how brightly a white dwarf star shines compared to a red giant star. For the sake of this problem, lets assume a white dwarf has a temperature roughly twice as large as a red giant star. As for their stellar radii, the white dwarf has a radius about 1/10000th that of a red giant star. With this in mind, how does the luminosity of a red giant star compare to that of a white dwarf? (Put differently, find the ratio of their luminosities a.k.a. how many times more luminous is the red giant than the white dwarf? An answer of less than 1 means the white dwarf is more luminous, an answer of 1 means they have the same luminosity, and an answer greater than 1 means the red giant is more luAstronomers us the P-Cygni line features in a spectrum of a supernova to... Select one alternative: ...measure the velocity of the supernova ejecta. ...to measure the rotation speed of the star that exploded. ...measure the composition of the supernova ejecta more accurately than with other lines. ...to measure the mass of the neutron star or black hole formed in the supernova.
- For the PP chain 0.7% of the mass participating in nuclear fusion is liberated as energy which produces a star's luminosity. Assume that the core of a main sequence star consists of 10% of its total mass. Hence, estimate the lifetime of a star on the main sequence in terms of its luminosity L/L. Give your answer in years. You may use the observed mass-luminosity relation L x M³.5, where M is the star's total mass. Using typical values, calculate estimates for the main sequence lifetime of a KO star and a 05 star. Describe briefly why your estimate might be more accurate for K stars compared to O stars.(Astronomy) Hyades Cluster Age. This chapter states that the Hyades cluster is 650 million years old. What is the age of the cluster based on highest-mass star in the cluster that is still on the main sequence? (Hint: the figure and the table below may be helpful.)Astronomers use two basis properties of stars to classify them. These two properties are luminosity and surface temperature. Luminosity usually refers to the brightness of the star relative to the brightness of our sun. Astronomers will often use a star’s color to measure its temperature. Stars with low temperatures produce a reddish light while stars with high temperatures shine with a brilliant blue—white light. Surface temperatures of stars range from 3000o C to 50,000o C. When these surface temperatures are plotted against luminosity, the stars fall into groups. Using the data similar to what you will plot in this activity, Danish astronomer Ejnar Hertzsprung and United States astronomer Henry Norris Russell independently arrived at similar results in what is now commonly referred to as the HR Diagram. Procedures:1. Read the Background Information 2. On the graph paper provided. Place a number next to the star according to its luminosity and surface temperature listed in the data…
- Finally estimate the lifetime of an M0 spectral type star if the total mass of the star is M = 0.51M⊙ , and it has a total luminosity L = 7.7× 10−2L⊙. Make the same assumptions as the previous two problems. How does your calculated Main Sequence lifetime for the M0 type star compare to the Main Sequence lifetime you calculated for the Sun?Q3.2 The supergiant star has a surface temperature of about 2900 K and emits a power of approximately 4 x 1030 W. Assuming that is a perfect emitter and spherical, find its radius. (hint: Area of the sphere is A = 4πr²)What is the life expectancy (in years) of a 10 M⊙ main-sequence star? What is the life expectancy (in years) of a 70 M⊙ main-sequence star?
- A main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES MASS VANISH as H is fused to He in the star’s core? Note: When we say “mass vanish '' what we really mean is “gets converted into energy and leaves the star as light”. Note: approximate answer: 3.55 E14 kg/s b. At what rate is H converted into He? To do this you need to take into account that for every kg of hydrogen burned, only 0.7% gets converted into energy while the rest turns into helium. Approximate answer = 5E16 kg/s c. Assuming that only the 10% of the star’s mass in the central regions will get hot enough for fusion, calculate the main sequence lifetime of the star. Put your answer in years, and compare it to the lifetime of the Sun. It should be much, much shorter. Approximate answer: 30 million years.A star has a peak output at 440 nm and has a luminosity of 3 solar luminosities. What is its radius? (LS=3.826 X 1026 J/s)answer for 3