Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NOCI (g) = 2NO (g) + Cl2 (g) AGº =41. kJ Now suppose a reaction vessel is filled with 7.45 atm of nitrosyl chloride (NOCI) and 6.59 atm of chlorine (Cl₂) at 335. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of C₁₂ tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of C12 will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of C₁₂ will tend to fall, can that be changed to a tendency to rise by adding NO? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. yes no atm

Chemistry: Principles and Reactions
8th Edition
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:William L. Masterton, Cecile N. Hurley
Chapter12: Gaseous Chemical Equilibrium
Section: Chapter Questions
Problem 56QAP: Sulfur oxychloride, SO2Cl2, decomposes to sulfur dioxide and chlorine gases. SO2Cl2(g)SO2(g)+Cl2(g)...
icon
Related questions
Question
Using reaction free energy to predict equilibrium composition
Consider the following equilibrium:
2NOCI (g) = 2NO (g) + Cl2 (g)
AGº =41. kJ
Now suppose a reaction vessel is filled with 7.45 atm of nitrosyl chloride (NOCI) and 6.59 atm of chlorine (Cl₂) at 335. °C. Answer the
following questions about this system:
rise
Under these conditions, will the pressure of C₁₂ tend to rise or fall?
☐ x10
fall
Is it possible to reverse this tendency by adding NO?
In other words, if you said the pressure of C12 will tend to rise, can that be
changed to a tendency to fall by adding NO? Similarly, if you said the
pressure of C₁₂ will tend to fall, can that be changed to a tendency to rise
by adding NO?
If you said the tendency can be reversed in the second question, calculate
the minimum pressure of NO needed to reverse it.
Round your answer to 2 significant digits.
yes
no
atm
Transcribed Image Text:Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NOCI (g) = 2NO (g) + Cl2 (g) AGº =41. kJ Now suppose a reaction vessel is filled with 7.45 atm of nitrosyl chloride (NOCI) and 6.59 atm of chlorine (Cl₂) at 335. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of C₁₂ tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of C12 will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of C₁₂ will tend to fall, can that be changed to a tendency to rise by adding NO? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. yes no atm
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:
9781938168390
Author:
Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:
OpenStax
Introductory Chemistry: A Foundation
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781285199030
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Introductory Chemistry: A Foundation
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781337399425
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning