Using only the Laplace transform table (I obtain the Laplace transform of the following function: f(t) = cosh(6t) + 8t² + t,

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Laplace transform question, substitution for cosh is given

(a) f(t)
(b)
C₂
t
ekt
ca constant
na positive integer
k a constant
sin at,
cos at,
a a real constant
a a real constant
esin at, k and a real constants
e-*t cos at,
k and a real constants
L{f(t)} = F(s)
C
L{tf(t)} = (-1)"-
S
- = -
dºF(s)
ds"
s- k
a
s² + a²
S
² + a²
a
(s + k)² + a²
s+k
(s + k)² + a²
Linearity:
First shift theorem: L{ef(t)} = F(sa),
Derivative of transform:
Region of convergence
Re(s) > 0
Re(s) > 0
Re(s) > 0
Re(s) > Re(K)
Re(s) > 0
Re(s) > 0
L{f(t)} = F(s), Re(s) > 0₁ and L{g(t)} = G(s), Re(s) > 0₂
L{af(t) + ßg(t)} = aF(s) + BG(s), Re(s) > max(₁, ₂)
Re(s) > ₁ + Re(a)
Re(s) > -k
Re(s) > -k
(n= 1, 2, ...), Re(s) > 0₁
Transcribed Image Text:(a) f(t) (b) C₂ t ekt ca constant na positive integer k a constant sin at, cos at, a a real constant a a real constant esin at, k and a real constants e-*t cos at, k and a real constants L{f(t)} = F(s) C L{tf(t)} = (-1)"- S - = - dºF(s) ds" s- k a s² + a² S ² + a² a (s + k)² + a² s+k (s + k)² + a² Linearity: First shift theorem: L{ef(t)} = F(sa), Derivative of transform: Region of convergence Re(s) > 0 Re(s) > 0 Re(s) > 0 Re(s) > Re(K) Re(s) > 0 Re(s) > 0 L{f(t)} = F(s), Re(s) > 0₁ and L{g(t)} = G(s), Re(s) > 0₂ L{af(t) + ßg(t)} = aF(s) + BG(s), Re(s) > max(₁, ₂) Re(s) > ₁ + Re(a) Re(s) > -k Re(s) > -k (n= 1, 2, ...), Re(s) > 0₁
Using only the Laplace transform table (Figure 11.5) in the Glyn James
textbook, obtain the Laplace transform of the following function:
f(t) = cosh(6t) + 8t² + t,
e te-
where "cosh" stands for hyperbolic cosine and cosh(x) = ²42-²
Transcribed Image Text:Using only the Laplace transform table (Figure 11.5) in the Glyn James textbook, obtain the Laplace transform of the following function: f(t) = cosh(6t) + 8t² + t, e te- where "cosh" stands for hyperbolic cosine and cosh(x) = ²42-²
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,