Use the triangle to find sin(23), cos(23), sin(), cos() 25 24 B

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter6: The Trigonometric Functions
Section6.2: Trigonometric Functions Of Angles
Problem 18E
icon
Related questions
Question
---

### Trigonometric Identities and Exact Values

#### 6. Use the triangle to find sin(2β), cos(2β), sin(β/2), cos(β/2)

In the given problem, we have a right triangle with the following dimensions:

- Hypotenuse (opposite the right angle) = 25 units
- Adjacent side to angle β = 24 units
- Opposite side to angle β = a units

Since it's a right triangle, we can use the Pythagorean theorem to find the value of \( a \):

\[ a^2 + 24^2 = 25^2 \]
\[ a^2 + 576 = 625 \]
\[ a^2 = 49 \]
\[ a = 7 \]

Using these values:

\[ \sin(\beta) = \frac{opposite}{hypotenuse} = \frac{7}{25} \]
\[ \cos(\beta) = \frac{adjacent}{hypotenuse} = \frac{24}{25} \]

Using double-angle formulas and half-angle formulas:

- **Double Angle Formulas**

\[ \sin(2\beta) = 2 \sin(\beta) \cos(\beta) \]
\[ \sin(2\beta) = 2 \left( \frac{7}{25} \right) \left( \frac{24}{25} \right) = \frac{2 \times 7 \times 24}{625} = \frac{336}{625} \]

\[ \cos(2\beta) = \cos^2(\beta) - \sin^2(\beta) \]
\[ \cos(2\beta) = \left( \frac{24}{25} \right)^2 - \left( \frac{7}{25} \right)^2 \]
\[ \cos(2\beta) = \frac{576}{625} - \frac{49}{625} = \frac{527}{625} \]

- **Half Angle Formulas**

\[ \sin\left(\frac{\beta}{2}\right) = \sqrt{\frac{1 - \cos(\beta)}{2}} \]
\[ \cos\left(\frac{\beta}{2}\right) = \sqrt{\frac{1 + \cos(\beta)}{2}} \]

#### 7. Write
Transcribed Image Text:--- ### Trigonometric Identities and Exact Values #### 6. Use the triangle to find sin(2β), cos(2β), sin(β/2), cos(β/2) In the given problem, we have a right triangle with the following dimensions: - Hypotenuse (opposite the right angle) = 25 units - Adjacent side to angle β = 24 units - Opposite side to angle β = a units Since it's a right triangle, we can use the Pythagorean theorem to find the value of \( a \): \[ a^2 + 24^2 = 25^2 \] \[ a^2 + 576 = 625 \] \[ a^2 = 49 \] \[ a = 7 \] Using these values: \[ \sin(\beta) = \frac{opposite}{hypotenuse} = \frac{7}{25} \] \[ \cos(\beta) = \frac{adjacent}{hypotenuse} = \frac{24}{25} \] Using double-angle formulas and half-angle formulas: - **Double Angle Formulas** \[ \sin(2\beta) = 2 \sin(\beta) \cos(\beta) \] \[ \sin(2\beta) = 2 \left( \frac{7}{25} \right) \left( \frac{24}{25} \right) = \frac{2 \times 7 \times 24}{625} = \frac{336}{625} \] \[ \cos(2\beta) = \cos^2(\beta) - \sin^2(\beta) \] \[ \cos(2\beta) = \left( \frac{24}{25} \right)^2 - \left( \frac{7}{25} \right)^2 \] \[ \cos(2\beta) = \frac{576}{625} - \frac{49}{625} = \frac{527}{625} \] - **Half Angle Formulas** \[ \sin\left(\frac{\beta}{2}\right) = \sqrt{\frac{1 - \cos(\beta)}{2}} \] \[ \cos\left(\frac{\beta}{2}\right) = \sqrt{\frac{1 + \cos(\beta)}{2}} \] #### 7. Write
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Holt Mcdougal Larson Pre-algebra: Student Edition…
Holt Mcdougal Larson Pre-algebra: Student Edition…
Algebra
ISBN:
9780547587776
Author:
HOLT MCDOUGAL
Publisher:
HOLT MCDOUGAL
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Algebra and Trigonometry (MindTap Course List)
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:
9781305071742
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning