Simplify (a + b)° a sin (180°) + ab sin (270°) + b sin (360°) cos (360°) + (a – b)´ csc (270°) -

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
**Simplify the Expression**

\[
\frac{{(a + b)^2 \cos(360^\circ) + (a - b)^2 \csc(270^\circ)}}{{a \sin(180^\circ) + ab \sin(270^\circ) + b \sin(360^\circ)}}.
\]

**Steps to Simplify:**

1. **Trigonometric Identities:**
   - \(\cos(360^\circ) = 1\)
   - \(\csc(270^\circ) = -1\)
   - \(\sin(180^\circ) = 0\)
   - \(\sin(270^\circ) = -1\)
   - \(\sin(360^\circ) = 0\)

2. **Substitute and Simplify:**
   - Numerator:
     \[
     (a + b)^2 \cdot 1 + (a - b)^2 \cdot (-1)
     = (a + b)^2 - (a - b)^2
     \]
   - Denominator:
     \[
     a \cdot 0 + ab \cdot (-1) + b \cdot 0
     = -ab
     \]

3. **Expanded Form:**
   - Expand \((a + b)^2\) and \((a - b)^2\):
     \[
     (a + b)^2 = a^2 + 2ab + b^2
     \]
     \[
     (a - b)^2 = a^2 - 2ab + b^2
     \]
   - Substitute into the numerator:
     \[
     (a^2 + 2ab + b^2) - (a^2 - 2ab + b^2) = 4ab
     \]

4. **Final Result:**
   \[
   \frac{4ab}{-ab} = -4
   \]

The simplified value of the given expression is \(-4\).
Transcribed Image Text:**Simplify the Expression** \[ \frac{{(a + b)^2 \cos(360^\circ) + (a - b)^2 \csc(270^\circ)}}{{a \sin(180^\circ) + ab \sin(270^\circ) + b \sin(360^\circ)}}. \] **Steps to Simplify:** 1. **Trigonometric Identities:** - \(\cos(360^\circ) = 1\) - \(\csc(270^\circ) = -1\) - \(\sin(180^\circ) = 0\) - \(\sin(270^\circ) = -1\) - \(\sin(360^\circ) = 0\) 2. **Substitute and Simplify:** - Numerator: \[ (a + b)^2 \cdot 1 + (a - b)^2 \cdot (-1) = (a + b)^2 - (a - b)^2 \] - Denominator: \[ a \cdot 0 + ab \cdot (-1) + b \cdot 0 = -ab \] 3. **Expanded Form:** - Expand \((a + b)^2\) and \((a - b)^2\): \[ (a + b)^2 = a^2 + 2ab + b^2 \] \[ (a - b)^2 = a^2 - 2ab + b^2 \] - Substitute into the numerator: \[ (a^2 + 2ab + b^2) - (a^2 - 2ab + b^2) = 4ab \] 4. **Final Result:** \[ \frac{4ab}{-ab} = -4 \] The simplified value of the given expression is \(-4\).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning