Use the transforms in Fig. 4.1.2 to find the Laplace transforms of the functions. A preliminary integration by parts may be necessary. f(t) = tcos2t

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Use the transforms in Fig. 4.1.2 to find the Laplace transforms of the functions. A preliminary integration by parts may be necessary.

f(t) = tcos2t

I have this hint: Use the formula L{sin⁡kt }=k/(s^2+k^2 ), and then differentiate both sides over k(!), but I don't understand how to use it.

Please break this down for me, using the hint, if you get it, or not, otherwise, and please do not skip steps, assuming that I know what you did when you skipped them, if you know what I mean.

Thank you for your help.

1
f(t)
t" (n ≥ 0)
ta (a > -1)
eat
cos kt
sin kt
cosh kt
sinh kt
u(ta)
1
S
1
5²
n!
sn+1
Γ(α + 1)
sa+1
1
sa
F(s)
S
s²+k²
k
s²+k²
S
s²k²
k
s² - k²
e-as
S
(s > 0)
(s > 0)
(s > 0)
(s > 0)
(s > 0)
(s > 0)
(s > 0)
(s > |k|)
(s > |k|)
(s > 0)
FIGURE 4.1.2. A short table of
Laplace transforms.
Transcribed Image Text:1 f(t) t" (n ≥ 0) ta (a > -1) eat cos kt sin kt cosh kt sinh kt u(ta) 1 S 1 5² n! sn+1 Γ(α + 1) sa+1 1 sa F(s) S s²+k² k s²+k² S s²k² k s² - k² e-as S (s > 0) (s > 0) (s > 0) (s > 0) (s > 0) (s > 0) (s > 0) (s > |k|) (s > |k|) (s > 0) FIGURE 4.1.2. A short table of Laplace transforms.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 13 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,