EX: Find the F.T. of the triangular pulse: g(t) = AA ( + ) Sols Apply differentiation property of F-T (jw)² G(W) = 2A (2² - 2 + (x²) (e -_-1) get) = 2A S(t+1)-4A S(t) + 2A S(t-1) The F.T for the both sides gives (JW) ³G (W) = 4A (e juz 8A w²t G(W) = − 4A ( cos w ² - 1) = SA ( cos w들 - = 2 2 sin wt 4 1) = 82 ( 1-05 0 ) 2 AT sin we Wt 4 2 24 AZ انه A ZA -44 8(1)-(2) 15 How did he get the value inside the circle =9c 7 2A F ~/N st

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
EX: Find the F.T. of the triangular pulse: g(t) = AA (+)
Sols Apply differentiation property of F-T
g(t) = 2A S(t+1)_4A S(t) + 2A S(t-I)
The F. I for the both sides gives.
(jw)² G (w) = 2A (NE_2 +2²)
(e
j들
(JW)³&(W) = 4A (2 ² + 2²
(e
2
G(W) = -4A
whe
- 8A
w²t
-₁)
8A
( cos 뜰 -1) = 82 (1-005)
2
sin wt
4
At sin wt
2
Wt
4
2
3/4
N
2A
T
ZA
0
0
8(1)-A(+)
=9c
How did he get the
value inside the circle
Hes
-9C2A
ہم تم
at
ot
Transcribed Image Text:EX: Find the F.T. of the triangular pulse: g(t) = AA (+) Sols Apply differentiation property of F-T g(t) = 2A S(t+1)_4A S(t) + 2A S(t-I) The F. I for the both sides gives. (jw)² G (w) = 2A (NE_2 +2²) (e j들 (JW)³&(W) = 4A (2 ² + 2² (e 2 G(W) = -4A whe - 8A w²t -₁) 8A ( cos 뜰 -1) = 82 (1-005) 2 sin wt 4 At sin wt 2 Wt 4 2 3/4 N 2A T ZA 0 0 8(1)-A(+) =9c How did he get the value inside the circle Hes -9C2A ہم تم at ot
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,