Use the sample data and confidence level given below to complete parts (a) through (d). A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 958 and x = 572 who said "yes." Use a 95% confidence level. Click the icon to view a table of z scores. a) Find the best point estimate of the population proportion p. 0.597 (Round to three decimal places as needed.) b) Identify the value of the margin of error E. E= (Round to three decimal places as needed.) Standard Normal (z) Distribution POSITIVE z Scores 0 Cumulative Area from the LEFT 2 00 01 02 03 04 05 06 .07 08 .09 Z 0.0 5000 5040 5080 5120 $160 5199 5239 5279 5319 5359 0.0 0.1 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753 0.1 0.2 5793 5832 5871 5910 5948 .5987 .6026 6064 6103 6141 0.2 03 6179 6217 6255 6293 6331 6368 6406 6443 6480 6517 0.3 04 6554 6591 6628 6664 6700 .6736 6772 6808 6844 6879 0.4 0.5 6915 6950 6985 7019 7054 .7068 7123 7157 7190 7224 0.5 06 7257 .7291 7324 7357 7389 .7422 7454 7486 7517 7549 0.6 07 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852 0.7 08 7881 7910 7939 .7967 7995 .8023 80511 8078 8106 8133 0.8 0.9 8159 8186 8212 8238 8264 8289 8315 8340 8365 8389 0.9 10 8413 8438 8461 8485 8508 8531 8564 8577 8599 8621 1.0 1.1 8643 8665 8686 8708 8729 8749 .8770 8790 8810 8830 1.1 12 8849 8869 8888 8907 8925 8944 8962 8980 8997 9015 1.2 13 9032 9049 9066 9082 9099 9115 .9131 9147 9162 9177 1.3 14 9192 9207 9222 9236 9251 9265 9279 9292 9306 9319 1.4 1.5 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441 1.5 1.6 9452 9463 9474 9484 9495 9505 9515 .9625 9535 9545 1.6 1.7 9554 9564 9573 9582 9591 9599 9608 9616 9625 9633 1.7 18 9641 9649 9656 9664 .9671 9678 9686 9693 9699 9706 1.8 1.9 9713 9719 9726 9732 9738 9744 9750 .9756 9761 9767 1.9 2.0 9772 9778 9783 9788 9793 9798 9803 9808 9812 9817 2.0 2.1 9821 9826 9834 9838 9842 9846 9850 9854 9857 2.1 2.2 9861 966 9871 9875 9878 9881 9684 9687 9890 2.2 23 9893 9896 9901 9904 9906 9909 9911 9913 9916 2.3 2.4 9918 9920 9925 9927 9929 9931 9932 9934 9036 2.4 2.5 9938 9940 9941 9943 9945 9946 9948 9949 9951 9952 2.5 26 9953 9955 9956 9957 9959 9960 .9961 9962 9963 9964 26 2.7 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 2.7 2.8 9974 9975 .9976 9977 9977 9978 9979 9979 9980 9681 2.8 2.9 9981 9982 9982 9983 9984 9984 9985 9966 9966 2.9 3.0 9987 9987 9987 9988 9988 9989 9989 9990 3.0 3.1 9990 9991 9991 9991 9992 9992 9093 3.1 3.2 9993 9993 9994 9994 9994 9994 9995 9995 9595 3.2 3.3 9995 9995 9995 9996 9996 9996 9996 9996 9997 3.3 34 9997 9997 9997 9997 9997 9997 9997 9997 9997 9998 3.4 3.50 and up 3.50 and up 9999 00 .01 02 .03 .04 05 .07 08 09 NOTE For values of z above 3.49, use 0.9999 for the area. "Use these common values that result from interpolation: 7Score 1.645 2.576 Area 0.9500 0.9950 Common Critical Values Confidence Critical Lovel Value 0.90 1.645 0.95 1.96 0.99 2.575

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%
Use the sample data and confidence level given below to complete parts (a) through (d).
A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 958 and x = 572 who said "yes." Use a 95% confidence level.
Click the icon to view a table of z scores.
a) Find the best point estimate of the population proportion p.
0.597
(Round to three decimal places as needed.)
b) Identify the value of the margin of error E.
E=
(Round to three decimal places as needed.)
Transcribed Image Text:Use the sample data and confidence level given below to complete parts (a) through (d). A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 958 and x = 572 who said "yes." Use a 95% confidence level. Click the icon to view a table of z scores. a) Find the best point estimate of the population proportion p. 0.597 (Round to three decimal places as needed.) b) Identify the value of the margin of error E. E= (Round to three decimal places as needed.)
Standard Normal (z) Distribution
POSITIVE z Scores
0
Cumulative Area from the LEFT
2
00
01
02
03
04
05
06
.07
08
.09
Z
0.0
5000
5040
5080
5120
$160
5199
5239
5279
5319
5359
0.0
0.1
5398
5438
5478
5517
5557
5596
5636
5675
5714
5753
0.1
0.2
5793
5832
5871
5910
5948
.5987
.6026
6064
6103
6141
0.2
03
6179
6217
6255
6293
6331
6368
6406
6443
6480
6517
0.3
04
6554
6591
6628
6664
6700
.6736
6772
6808
6844
6879
0.4
0.5
6915
6950
6985
7019
7054
.7068
7123
7157
7190
7224
0.5
06
7257
.7291
7324
7357
7389
.7422
7454
7486
7517
7549
0.6
07
7580
7611
7642
7673
7704
7734
7764
7794
7823
7852
0.7
08
7881
7910
7939
.7967
7995
.8023
80511
8078
8106
8133
0.8
0.9
8159
8186
8212
8238
8264
8289
8315
8340
8365
8389
0.9
10
8413
8438
8461
8485
8508
8531
8564
8577
8599
8621
1.0
1.1
8643
8665
8686
8708
8729
8749
.8770
8790
8810
8830
1.1
12
8849
8869
8888
8907
8925
8944
8962
8980
8997
9015
1.2
13
9032
9049
9066
9082
9099
9115
.9131
9147
9162
9177
1.3
14
9192
9207
9222
9236
9251
9265
9279
9292
9306
9319
1.4
1.5
9332
9345
9357
9370
9382
9394
9406
9418
9429
9441
1.5
1.6
9452
9463
9474
9484
9495
9505
9515
.9625
9535
9545
1.6
1.7
9554
9564
9573
9582
9591
9599
9608
9616
9625
9633
1.7
18
9641
9649
9656
9664
.9671
9678
9686
9693
9699
9706
1.8
1.9
9713
9719
9726
9732
9738
9744
9750
.9756
9761
9767
1.9
2.0
9772
9778
9783
9788
9793
9798
9803
9808
9812
9817
2.0
2.1
9821
9826
9834
9838
9842
9846
9850
9854
9857
2.1
2.2
9861
966
9871
9875
9878
9881
9684
9687
9890
2.2
23
9893
9896
9901
9904
9906
9909
9911
9913
9916
2.3
2.4
9918
9920
9925
9927
9929
9931
9932
9934
9036
2.4
2.5
9938
9940
9941
9943
9945
9946
9948
9949
9951
9952
2.5
26
9953
9955
9956
9957
9959
9960
.9961
9962
9963
9964
26
2.7
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
2.7
2.8
9974
9975
.9976
9977
9977
9978
9979
9979
9980
9681
2.8
2.9
9981
9982
9982
9983
9984
9984
9985
9966
9966
2.9
3.0
9987
9987
9987
9988
9988
9989
9989
9990
3.0
3.1
9990
9991
9991
9991
9992
9992
9093
3.1
3.2
9993
9993
9994
9994
9994
9994
9995
9995
9595
3.2
3.3
9995
9995
9995
9996
9996
9996
9996
9996
9997
3.3
34
9997
9997
9997
9997
9997
9997
9997
9997
9997
9998
3.4
3.50 and up
3.50 and up
9999
00
.01
02
.03
.04
05
.07
08
09
NOTE For values of z above 3.49, use 0.9999 for the area.
"Use these common values that result from interpolation:
7Score
1.645
2.576
Area
0.9500
0.9950
Common Critical Values
Confidence
Critical
Lovel
Value
0.90
1.645
0.95
1.96
0.99
2.575
Transcribed Image Text:Standard Normal (z) Distribution POSITIVE z Scores 0 Cumulative Area from the LEFT 2 00 01 02 03 04 05 06 .07 08 .09 Z 0.0 5000 5040 5080 5120 $160 5199 5239 5279 5319 5359 0.0 0.1 5398 5438 5478 5517 5557 5596 5636 5675 5714 5753 0.1 0.2 5793 5832 5871 5910 5948 .5987 .6026 6064 6103 6141 0.2 03 6179 6217 6255 6293 6331 6368 6406 6443 6480 6517 0.3 04 6554 6591 6628 6664 6700 .6736 6772 6808 6844 6879 0.4 0.5 6915 6950 6985 7019 7054 .7068 7123 7157 7190 7224 0.5 06 7257 .7291 7324 7357 7389 .7422 7454 7486 7517 7549 0.6 07 7580 7611 7642 7673 7704 7734 7764 7794 7823 7852 0.7 08 7881 7910 7939 .7967 7995 .8023 80511 8078 8106 8133 0.8 0.9 8159 8186 8212 8238 8264 8289 8315 8340 8365 8389 0.9 10 8413 8438 8461 8485 8508 8531 8564 8577 8599 8621 1.0 1.1 8643 8665 8686 8708 8729 8749 .8770 8790 8810 8830 1.1 12 8849 8869 8888 8907 8925 8944 8962 8980 8997 9015 1.2 13 9032 9049 9066 9082 9099 9115 .9131 9147 9162 9177 1.3 14 9192 9207 9222 9236 9251 9265 9279 9292 9306 9319 1.4 1.5 9332 9345 9357 9370 9382 9394 9406 9418 9429 9441 1.5 1.6 9452 9463 9474 9484 9495 9505 9515 .9625 9535 9545 1.6 1.7 9554 9564 9573 9582 9591 9599 9608 9616 9625 9633 1.7 18 9641 9649 9656 9664 .9671 9678 9686 9693 9699 9706 1.8 1.9 9713 9719 9726 9732 9738 9744 9750 .9756 9761 9767 1.9 2.0 9772 9778 9783 9788 9793 9798 9803 9808 9812 9817 2.0 2.1 9821 9826 9834 9838 9842 9846 9850 9854 9857 2.1 2.2 9861 966 9871 9875 9878 9881 9684 9687 9890 2.2 23 9893 9896 9901 9904 9906 9909 9911 9913 9916 2.3 2.4 9918 9920 9925 9927 9929 9931 9932 9934 9036 2.4 2.5 9938 9940 9941 9943 9945 9946 9948 9949 9951 9952 2.5 26 9953 9955 9956 9957 9959 9960 .9961 9962 9963 9964 26 2.7 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 2.7 2.8 9974 9975 .9976 9977 9977 9978 9979 9979 9980 9681 2.8 2.9 9981 9982 9982 9983 9984 9984 9985 9966 9966 2.9 3.0 9987 9987 9987 9988 9988 9989 9989 9990 3.0 3.1 9990 9991 9991 9991 9992 9992 9093 3.1 3.2 9993 9993 9994 9994 9994 9994 9995 9995 9595 3.2 3.3 9995 9995 9995 9996 9996 9996 9996 9996 9997 3.3 34 9997 9997 9997 9997 9997 9997 9997 9997 9997 9998 3.4 3.50 and up 3.50 and up 9999 00 .01 02 .03 .04 05 .07 08 09 NOTE For values of z above 3.49, use 0.9999 for the area. "Use these common values that result from interpolation: 7Score 1.645 2.576 Area 0.9500 0.9950 Common Critical Values Confidence Critical Lovel Value 0.90 1.645 0.95 1.96 0.99 2.575
Expert Solution
steps

Step by step

Solved in 2 steps with 8 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman