Use the sample data and confidence level given below to complete parts (a) through (d). A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 983 and x 599 who said "yes." Use a 99% confidence level. Click the icon to view a table of z scores. a) Find the best point estimate of the population proportion p. 0.609+ (Round to three decimal places as needed.) b) Identify the value of the margin of error E. E= (Round to three decimal places as needed.) c) Construct the confidence interval. (Round to three decimal places as needed.) d) Write a statement that correctly interprets the confidence interval. Choose the correct answer below. O A. There is a 99% chance that the true value of the population proportion will fall between the lower bound and the upper bound. O.B. One has 99% confidence that the interval from the lower bound to the upper bound actually does contain the true value of the population proportion. O C. 99% of sample proportions will fall between the lower bound and the upper bound. O D. One has 99% confidence that the sample proportion is equal to the population proportion.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Use the sample data and confidence level given below to complete parts (a) through (d).
A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 983 and x = 599 who said "yes." Use a 99%
confidence level.
Click the icon to view a table of z scores.
a) Find the best point estimate of the population proportion p.
0.609 +
(Round to three decimal places as needed.)
b) Identify the value of the margin of error E.
E =
(Round to three decimal places as needed.)
c) Construct the confidence interval.
(Round to three decimal places as needed.)
d) Write a statement that correctly interprets the confidence interval. Choose the correct answer below.
O A. There is a 99% chance that the true value of the population proportion will fall between the lower bound and the upper bound.
O.B. One has 99% confidence that the interval from the lower bound to the upper bound actually does contain the true value of the
population proportion.
O C. 99% of sample proportions will fall between the lower bound and the upper bound.
O D. One has 99% confidence that the sample proportion is equal to the population proportion.
More
Transcribed Image Text:Use the sample data and confidence level given below to complete parts (a) through (d). A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 983 and x = 599 who said "yes." Use a 99% confidence level. Click the icon to view a table of z scores. a) Find the best point estimate of the population proportion p. 0.609 + (Round to three decimal places as needed.) b) Identify the value of the margin of error E. E = (Round to three decimal places as needed.) c) Construct the confidence interval. (Round to three decimal places as needed.) d) Write a statement that correctly interprets the confidence interval. Choose the correct answer below. O A. There is a 99% chance that the true value of the population proportion will fall between the lower bound and the upper bound. O.B. One has 99% confidence that the interval from the lower bound to the upper bound actually does contain the true value of the population proportion. O C. 99% of sample proportions will fall between the lower bound and the upper bound. O D. One has 99% confidence that the sample proportion is equal to the population proportion. More
A1
X v
fx Positive z Scores
B.
H
1
Positive z Scores
2 Standard Normal (2) Distribution: Cumulative Area from the Left
0.05
0.5199
0.5596
0.06
0.5239
0.5636
32
0.01
0.02
0.03
0.04
0.07
0.08
0.09 z
0.5
0.5398
0.504
0.5438
0.516
0,5557
0.5279
0.5675
0.6064
4.
0.508
0.5359
0.5753
0.6141
0.6517
0.6879
0.7224
0.512
0.516
0.5319
0.5714
0.6103
0.648
0.6844
0.1
0.5478
0.5517
0.5636
0.5675
0.1
6.
0.2
0.5793
0.5832
0.5871
0.591
0.5948
0.5987
0.6026
0.2
0.3
0.6179
0.6368
0.6179
0.6217
0.6255
0.6293
0.6331
0.6406
0.6443
0.3
8
0.4
0.6554
0.6591
0.6628
0.6664
0.67
0.6736
0.6772
0.6808
0.4
0.7019
0.7357
0.7673
9
0.5
0.6915
0.695
0.6985
0.7054
0.7088
0.7123
0.7157
0.719
0.5
10
0.7486
0.7794
0.8078
0.834
0.8577
0.6
0.7257
0.7291
0.7324
0.7389
0.7422
0.7454
0.7517
0.7549
0.6
11
0.7
0.758
0.7611
0.7642
0,7764
0.7823
0.8106
0.8365
0.7704
0.7734
0.7852
0.7
12
0.8
0.7881
0.791
0.7939
0.7967
0.7995
0.8023
0.8051
0.8133
0.8
13
0.9
0.8159
0.8315
0.8186
0.8438
0.8212
0.8238
0.8264
0.8289
0.8389
0.9
14
0.8413
0.8461
0.8485
0.8508
0.8531
0.8554
0.8599
0.8621
1
15
0.8643
0.8708
0.877
0.8962
1.1
0.8665
0.8686
0.8729
0.8749
0.879
0.881
0.883
1.1
16
1.2
0.8849
0.9015
0.898
0.9147
0.9292
0.9418
0.9525
0.9616
0.9693
0.8869
0.8888
0.8907
0.8925
0.8944
0.8997
1.2
17
0.9099
0.9251
1.3
0.9032
0.9049
0.9066
0.9082
0.9115
0.9131
0.9162
0.9177
1.3
0.9192
0.9332
0.9452
18
1.4
0.9207
0.9222
0.9236
0.9265
0.9279
0.9306
0.9319
1.4
19
1.5
0.9345
0.9357
0.937
0.9382
0.9394
0.9406
0.9429
0.9441
1.5
20
1.6
0.9463
0.9564
0.9649
0.9474
0.9484
0.9495
0.9505
0.9515
0.9535
0.9545
1.6
21
1.7
0.9554
0.9573
0.9582
0.9608
0.9686
0.975
0.9591
0.9599
0.9625
0.9633
1.7
22
0.9641
0.9656
0.9726
1.8
0.9664
0.9732
0.9671
0.9678
0.9699
0.9706
1.8
23
0.9756
0.9808
1.9
0.9713
0.9719
0.9738
0.9744
0.975
0.9761
0.9767
1.9
24
0.9778
0.9772
0.9821
0.9861
0.9893
0.9783
0.9788
0.9793
0.9798
0.9803
0.9812
0.9817
2
25
2.1
0.9826
0.9864
0.983
0.9834
0.9838
0.985
0.9884
0.9842
0.9846
0.9854
0.9857
2.1
26
2.2
0.9875
0.9868
0.9871
0.9878
0.9881
0.9887
0.989
2.2
27
2.3
0.9898
0.9922
0.9941
0.9956
0.9896
0.9901
0.9904
0.9909
0.9931
0.9906
0.9911
0.9913
0.9916
2.3
28
2.4
0.9925
0.9918
0.992
0.9927
0.9929
0.9932
0.9934
0.9936
2.4
29
0.9938
0.9953
2.5
0.994
0.9948
0.9961
0.9943
0.9945
0.9946
0.9949
0.9962
0.9972
0.9951
0.9952
2.5
30
2.6
0.9955
0.9957
0.9959
0.996
0.9963
0.9964
2.6
31
2.7
2.8
0.9968
0.9977
0.9965
0.9966
0.9967
0.9969
0.997
0.9971
0,9979
0.9985
0.9973
0.9974
2.7
32
0.9974
0.9975
0.9976
0.9978
0.9977
0.9979
0.998
0.9981
2.8
33
2.9
0.9981
0.9982
0.9982
0.9983
0.9984
0.9984
0.9985
0.9986
0.9986
2.9
34
0.9987
0.9988
3
0.9987
0.9987
0.9989
0.9992
0.9988
0.9989
0.9989
0.9992
0.9994 0.9995
0.999
0.999
3
35
3.1
0.999
0.9991
0.9991
0.9991
0.9992
0.9992
0.9993
0.9995
0.9996
0.9993
3.1
36
3.2
0.9993
0.9993
0.9994
0.9996
0.9997
0.9994
0.9994
0.9994
0.9995
3.2
37
3.3
0.9995
0.9995
0.9996
0.9995
0.9996
0.9996
0.9996
0.9997
0.9997
3.3
38
3.4
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9998
39 3.50 and up
3.4
0.9999
40 z
3.50 and up
0.01
0.02
0.03
0.04
0.05
0.06
0.09 z
41 Note: For values of z above 3.49, use 0.9999 for the area.
0.07
0.08
42 "Use these common values that result from interpolation:
43 z score
Area
44
1.645
0.95
45
2.575
0.995
46 Common Critical Values
47 Confidence Level
Critical Value
48
0.9
1.645
49
0.95
1.96
50
0.99
2.575
51
Transcribed Image Text:A1 X v fx Positive z Scores B. H 1 Positive z Scores 2 Standard Normal (2) Distribution: Cumulative Area from the Left 0.05 0.5199 0.5596 0.06 0.5239 0.5636 32 0.01 0.02 0.03 0.04 0.07 0.08 0.09 z 0.5 0.5398 0.504 0.5438 0.516 0,5557 0.5279 0.5675 0.6064 4. 0.508 0.5359 0.5753 0.6141 0.6517 0.6879 0.7224 0.512 0.516 0.5319 0.5714 0.6103 0.648 0.6844 0.1 0.5478 0.5517 0.5636 0.5675 0.1 6. 0.2 0.5793 0.5832 0.5871 0.591 0.5948 0.5987 0.6026 0.2 0.3 0.6179 0.6368 0.6179 0.6217 0.6255 0.6293 0.6331 0.6406 0.6443 0.3 8 0.4 0.6554 0.6591 0.6628 0.6664 0.67 0.6736 0.6772 0.6808 0.4 0.7019 0.7357 0.7673 9 0.5 0.6915 0.695 0.6985 0.7054 0.7088 0.7123 0.7157 0.719 0.5 10 0.7486 0.7794 0.8078 0.834 0.8577 0.6 0.7257 0.7291 0.7324 0.7389 0.7422 0.7454 0.7517 0.7549 0.6 11 0.7 0.758 0.7611 0.7642 0,7764 0.7823 0.8106 0.8365 0.7704 0.7734 0.7852 0.7 12 0.8 0.7881 0.791 0.7939 0.7967 0.7995 0.8023 0.8051 0.8133 0.8 13 0.9 0.8159 0.8315 0.8186 0.8438 0.8212 0.8238 0.8264 0.8289 0.8389 0.9 14 0.8413 0.8461 0.8485 0.8508 0.8531 0.8554 0.8599 0.8621 1 15 0.8643 0.8708 0.877 0.8962 1.1 0.8665 0.8686 0.8729 0.8749 0.879 0.881 0.883 1.1 16 1.2 0.8849 0.9015 0.898 0.9147 0.9292 0.9418 0.9525 0.9616 0.9693 0.8869 0.8888 0.8907 0.8925 0.8944 0.8997 1.2 17 0.9099 0.9251 1.3 0.9032 0.9049 0.9066 0.9082 0.9115 0.9131 0.9162 0.9177 1.3 0.9192 0.9332 0.9452 18 1.4 0.9207 0.9222 0.9236 0.9265 0.9279 0.9306 0.9319 1.4 19 1.5 0.9345 0.9357 0.937 0.9382 0.9394 0.9406 0.9429 0.9441 1.5 20 1.6 0.9463 0.9564 0.9649 0.9474 0.9484 0.9495 0.9505 0.9515 0.9535 0.9545 1.6 21 1.7 0.9554 0.9573 0.9582 0.9608 0.9686 0.975 0.9591 0.9599 0.9625 0.9633 1.7 22 0.9641 0.9656 0.9726 1.8 0.9664 0.9732 0.9671 0.9678 0.9699 0.9706 1.8 23 0.9756 0.9808 1.9 0.9713 0.9719 0.9738 0.9744 0.975 0.9761 0.9767 1.9 24 0.9778 0.9772 0.9821 0.9861 0.9893 0.9783 0.9788 0.9793 0.9798 0.9803 0.9812 0.9817 2 25 2.1 0.9826 0.9864 0.983 0.9834 0.9838 0.985 0.9884 0.9842 0.9846 0.9854 0.9857 2.1 26 2.2 0.9875 0.9868 0.9871 0.9878 0.9881 0.9887 0.989 2.2 27 2.3 0.9898 0.9922 0.9941 0.9956 0.9896 0.9901 0.9904 0.9909 0.9931 0.9906 0.9911 0.9913 0.9916 2.3 28 2.4 0.9925 0.9918 0.992 0.9927 0.9929 0.9932 0.9934 0.9936 2.4 29 0.9938 0.9953 2.5 0.994 0.9948 0.9961 0.9943 0.9945 0.9946 0.9949 0.9962 0.9972 0.9951 0.9952 2.5 30 2.6 0.9955 0.9957 0.9959 0.996 0.9963 0.9964 2.6 31 2.7 2.8 0.9968 0.9977 0.9965 0.9966 0.9967 0.9969 0.997 0.9971 0,9979 0.9985 0.9973 0.9974 2.7 32 0.9974 0.9975 0.9976 0.9978 0.9977 0.9979 0.998 0.9981 2.8 33 2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9986 0.9986 2.9 34 0.9987 0.9988 3 0.9987 0.9987 0.9989 0.9992 0.9988 0.9989 0.9989 0.9992 0.9994 0.9995 0.999 0.999 3 35 3.1 0.999 0.9991 0.9991 0.9991 0.9992 0.9992 0.9993 0.9995 0.9996 0.9993 3.1 36 3.2 0.9993 0.9993 0.9994 0.9996 0.9997 0.9994 0.9994 0.9994 0.9995 3.2 37 3.3 0.9995 0.9995 0.9996 0.9995 0.9996 0.9996 0.9996 0.9997 0.9997 3.3 38 3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 39 3.50 and up 3.4 0.9999 40 z 3.50 and up 0.01 0.02 0.03 0.04 0.05 0.06 0.09 z 41 Note: For values of z above 3.49, use 0.9999 for the area. 0.07 0.08 42 "Use these common values that result from interpolation: 43 z score Area 44 1.645 0.95 45 2.575 0.995 46 Common Critical Values 47 Confidence Level Critical Value 48 0.9 1.645 49 0.95 1.96 50 0.99 2.575 51
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman