Use the sample data and confidence level given below to complete parts (a) through (d). A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 983 and x 599 who said "yes." Use a 99% confidence level. Click the icon to view a table of z scores. a) Find the best point estimate of the population proportion p. 0.609+ (Round to three decimal places as needed.) b) Identify the value of the margin of error E. E= (Round to three decimal places as needed.) c) Construct the confidence interval. (Round to three decimal places as needed.) d) Write a statement that correctly interprets the confidence interval. Choose the correct answer below. O A. There is a 99% chance that the true value of the population proportion will fall between the lower bound and the upper bound. O.B. One has 99% confidence that the interval from the lower bound to the upper bound actually does contain the true value of the population proportion. O C. 99% of sample proportions will fall between the lower bound and the upper bound. O D. One has 99% confidence that the sample proportion is equal to the population proportion.
Use the sample data and confidence level given below to complete parts (a) through (d). A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 983 and x 599 who said "yes." Use a 99% confidence level. Click the icon to view a table of z scores. a) Find the best point estimate of the population proportion p. 0.609+ (Round to three decimal places as needed.) b) Identify the value of the margin of error E. E= (Round to three decimal places as needed.) c) Construct the confidence interval. (Round to three decimal places as needed.) d) Write a statement that correctly interprets the confidence interval. Choose the correct answer below. O A. There is a 99% chance that the true value of the population proportion will fall between the lower bound and the upper bound. O.B. One has 99% confidence that the interval from the lower bound to the upper bound actually does contain the true value of the population proportion. O C. 99% of sample proportions will fall between the lower bound and the upper bound. O D. One has 99% confidence that the sample proportion is equal to the population proportion.
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
![Use the sample data and confidence level given below to complete parts (a) through (d).
A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 983 and x = 599 who said "yes." Use a 99%
confidence level.
Click the icon to view a table of z scores.
a) Find the best point estimate of the population proportion p.
0.609 +
(Round to three decimal places as needed.)
b) Identify the value of the margin of error E.
E =
(Round to three decimal places as needed.)
c) Construct the confidence interval.
(Round to three decimal places as needed.)
d) Write a statement that correctly interprets the confidence interval. Choose the correct answer below.
O A. There is a 99% chance that the true value of the population proportion will fall between the lower bound and the upper bound.
O.B. One has 99% confidence that the interval from the lower bound to the upper bound actually does contain the true value of the
population proportion.
O C. 99% of sample proportions will fall between the lower bound and the upper bound.
O D. One has 99% confidence that the sample proportion is equal to the population proportion.
More](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4cbada35-3122-4a6c-a25c-246bca0ae236%2F49d52b34-38b1-44c2-9a82-2ed232648b13%2Fkdatk5r_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Use the sample data and confidence level given below to complete parts (a) through (d).
A research institute poll asked respondents if they felt vulnerable to identity theft. In the poll, n = 983 and x = 599 who said "yes." Use a 99%
confidence level.
Click the icon to view a table of z scores.
a) Find the best point estimate of the population proportion p.
0.609 +
(Round to three decimal places as needed.)
b) Identify the value of the margin of error E.
E =
(Round to three decimal places as needed.)
c) Construct the confidence interval.
(Round to three decimal places as needed.)
d) Write a statement that correctly interprets the confidence interval. Choose the correct answer below.
O A. There is a 99% chance that the true value of the population proportion will fall between the lower bound and the upper bound.
O.B. One has 99% confidence that the interval from the lower bound to the upper bound actually does contain the true value of the
population proportion.
O C. 99% of sample proportions will fall between the lower bound and the upper bound.
O D. One has 99% confidence that the sample proportion is equal to the population proportion.
More
![A1
X v
fx Positive z Scores
B.
H
1
Positive z Scores
2 Standard Normal (2) Distribution: Cumulative Area from the Left
0.05
0.5199
0.5596
0.06
0.5239
0.5636
32
0.01
0.02
0.03
0.04
0.07
0.08
0.09 z
0.5
0.5398
0.504
0.5438
0.516
0,5557
0.5279
0.5675
0.6064
4.
0.508
0.5359
0.5753
0.6141
0.6517
0.6879
0.7224
0.512
0.516
0.5319
0.5714
0.6103
0.648
0.6844
0.1
0.5478
0.5517
0.5636
0.5675
0.1
6.
0.2
0.5793
0.5832
0.5871
0.591
0.5948
0.5987
0.6026
0.2
0.3
0.6179
0.6368
0.6179
0.6217
0.6255
0.6293
0.6331
0.6406
0.6443
0.3
8
0.4
0.6554
0.6591
0.6628
0.6664
0.67
0.6736
0.6772
0.6808
0.4
0.7019
0.7357
0.7673
9
0.5
0.6915
0.695
0.6985
0.7054
0.7088
0.7123
0.7157
0.719
0.5
10
0.7486
0.7794
0.8078
0.834
0.8577
0.6
0.7257
0.7291
0.7324
0.7389
0.7422
0.7454
0.7517
0.7549
0.6
11
0.7
0.758
0.7611
0.7642
0,7764
0.7823
0.8106
0.8365
0.7704
0.7734
0.7852
0.7
12
0.8
0.7881
0.791
0.7939
0.7967
0.7995
0.8023
0.8051
0.8133
0.8
13
0.9
0.8159
0.8315
0.8186
0.8438
0.8212
0.8238
0.8264
0.8289
0.8389
0.9
14
0.8413
0.8461
0.8485
0.8508
0.8531
0.8554
0.8599
0.8621
1
15
0.8643
0.8708
0.877
0.8962
1.1
0.8665
0.8686
0.8729
0.8749
0.879
0.881
0.883
1.1
16
1.2
0.8849
0.9015
0.898
0.9147
0.9292
0.9418
0.9525
0.9616
0.9693
0.8869
0.8888
0.8907
0.8925
0.8944
0.8997
1.2
17
0.9099
0.9251
1.3
0.9032
0.9049
0.9066
0.9082
0.9115
0.9131
0.9162
0.9177
1.3
0.9192
0.9332
0.9452
18
1.4
0.9207
0.9222
0.9236
0.9265
0.9279
0.9306
0.9319
1.4
19
1.5
0.9345
0.9357
0.937
0.9382
0.9394
0.9406
0.9429
0.9441
1.5
20
1.6
0.9463
0.9564
0.9649
0.9474
0.9484
0.9495
0.9505
0.9515
0.9535
0.9545
1.6
21
1.7
0.9554
0.9573
0.9582
0.9608
0.9686
0.975
0.9591
0.9599
0.9625
0.9633
1.7
22
0.9641
0.9656
0.9726
1.8
0.9664
0.9732
0.9671
0.9678
0.9699
0.9706
1.8
23
0.9756
0.9808
1.9
0.9713
0.9719
0.9738
0.9744
0.975
0.9761
0.9767
1.9
24
0.9778
0.9772
0.9821
0.9861
0.9893
0.9783
0.9788
0.9793
0.9798
0.9803
0.9812
0.9817
2
25
2.1
0.9826
0.9864
0.983
0.9834
0.9838
0.985
0.9884
0.9842
0.9846
0.9854
0.9857
2.1
26
2.2
0.9875
0.9868
0.9871
0.9878
0.9881
0.9887
0.989
2.2
27
2.3
0.9898
0.9922
0.9941
0.9956
0.9896
0.9901
0.9904
0.9909
0.9931
0.9906
0.9911
0.9913
0.9916
2.3
28
2.4
0.9925
0.9918
0.992
0.9927
0.9929
0.9932
0.9934
0.9936
2.4
29
0.9938
0.9953
2.5
0.994
0.9948
0.9961
0.9943
0.9945
0.9946
0.9949
0.9962
0.9972
0.9951
0.9952
2.5
30
2.6
0.9955
0.9957
0.9959
0.996
0.9963
0.9964
2.6
31
2.7
2.8
0.9968
0.9977
0.9965
0.9966
0.9967
0.9969
0.997
0.9971
0,9979
0.9985
0.9973
0.9974
2.7
32
0.9974
0.9975
0.9976
0.9978
0.9977
0.9979
0.998
0.9981
2.8
33
2.9
0.9981
0.9982
0.9982
0.9983
0.9984
0.9984
0.9985
0.9986
0.9986
2.9
34
0.9987
0.9988
3
0.9987
0.9987
0.9989
0.9992
0.9988
0.9989
0.9989
0.9992
0.9994 0.9995
0.999
0.999
3
35
3.1
0.999
0.9991
0.9991
0.9991
0.9992
0.9992
0.9993
0.9995
0.9996
0.9993
3.1
36
3.2
0.9993
0.9993
0.9994
0.9996
0.9997
0.9994
0.9994
0.9994
0.9995
3.2
37
3.3
0.9995
0.9995
0.9996
0.9995
0.9996
0.9996
0.9996
0.9997
0.9997
3.3
38
3.4
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9998
39 3.50 and up
3.4
0.9999
40 z
3.50 and up
0.01
0.02
0.03
0.04
0.05
0.06
0.09 z
41 Note: For values of z above 3.49, use 0.9999 for the area.
0.07
0.08
42 "Use these common values that result from interpolation:
43 z score
Area
44
1.645
0.95
45
2.575
0.995
46 Common Critical Values
47 Confidence Level
Critical Value
48
0.9
1.645
49
0.95
1.96
50
0.99
2.575
51](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4cbada35-3122-4a6c-a25c-246bca0ae236%2F49d52b34-38b1-44c2-9a82-2ed232648b13%2Fp6swxo8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:A1
X v
fx Positive z Scores
B.
H
1
Positive z Scores
2 Standard Normal (2) Distribution: Cumulative Area from the Left
0.05
0.5199
0.5596
0.06
0.5239
0.5636
32
0.01
0.02
0.03
0.04
0.07
0.08
0.09 z
0.5
0.5398
0.504
0.5438
0.516
0,5557
0.5279
0.5675
0.6064
4.
0.508
0.5359
0.5753
0.6141
0.6517
0.6879
0.7224
0.512
0.516
0.5319
0.5714
0.6103
0.648
0.6844
0.1
0.5478
0.5517
0.5636
0.5675
0.1
6.
0.2
0.5793
0.5832
0.5871
0.591
0.5948
0.5987
0.6026
0.2
0.3
0.6179
0.6368
0.6179
0.6217
0.6255
0.6293
0.6331
0.6406
0.6443
0.3
8
0.4
0.6554
0.6591
0.6628
0.6664
0.67
0.6736
0.6772
0.6808
0.4
0.7019
0.7357
0.7673
9
0.5
0.6915
0.695
0.6985
0.7054
0.7088
0.7123
0.7157
0.719
0.5
10
0.7486
0.7794
0.8078
0.834
0.8577
0.6
0.7257
0.7291
0.7324
0.7389
0.7422
0.7454
0.7517
0.7549
0.6
11
0.7
0.758
0.7611
0.7642
0,7764
0.7823
0.8106
0.8365
0.7704
0.7734
0.7852
0.7
12
0.8
0.7881
0.791
0.7939
0.7967
0.7995
0.8023
0.8051
0.8133
0.8
13
0.9
0.8159
0.8315
0.8186
0.8438
0.8212
0.8238
0.8264
0.8289
0.8389
0.9
14
0.8413
0.8461
0.8485
0.8508
0.8531
0.8554
0.8599
0.8621
1
15
0.8643
0.8708
0.877
0.8962
1.1
0.8665
0.8686
0.8729
0.8749
0.879
0.881
0.883
1.1
16
1.2
0.8849
0.9015
0.898
0.9147
0.9292
0.9418
0.9525
0.9616
0.9693
0.8869
0.8888
0.8907
0.8925
0.8944
0.8997
1.2
17
0.9099
0.9251
1.3
0.9032
0.9049
0.9066
0.9082
0.9115
0.9131
0.9162
0.9177
1.3
0.9192
0.9332
0.9452
18
1.4
0.9207
0.9222
0.9236
0.9265
0.9279
0.9306
0.9319
1.4
19
1.5
0.9345
0.9357
0.937
0.9382
0.9394
0.9406
0.9429
0.9441
1.5
20
1.6
0.9463
0.9564
0.9649
0.9474
0.9484
0.9495
0.9505
0.9515
0.9535
0.9545
1.6
21
1.7
0.9554
0.9573
0.9582
0.9608
0.9686
0.975
0.9591
0.9599
0.9625
0.9633
1.7
22
0.9641
0.9656
0.9726
1.8
0.9664
0.9732
0.9671
0.9678
0.9699
0.9706
1.8
23
0.9756
0.9808
1.9
0.9713
0.9719
0.9738
0.9744
0.975
0.9761
0.9767
1.9
24
0.9778
0.9772
0.9821
0.9861
0.9893
0.9783
0.9788
0.9793
0.9798
0.9803
0.9812
0.9817
2
25
2.1
0.9826
0.9864
0.983
0.9834
0.9838
0.985
0.9884
0.9842
0.9846
0.9854
0.9857
2.1
26
2.2
0.9875
0.9868
0.9871
0.9878
0.9881
0.9887
0.989
2.2
27
2.3
0.9898
0.9922
0.9941
0.9956
0.9896
0.9901
0.9904
0.9909
0.9931
0.9906
0.9911
0.9913
0.9916
2.3
28
2.4
0.9925
0.9918
0.992
0.9927
0.9929
0.9932
0.9934
0.9936
2.4
29
0.9938
0.9953
2.5
0.994
0.9948
0.9961
0.9943
0.9945
0.9946
0.9949
0.9962
0.9972
0.9951
0.9952
2.5
30
2.6
0.9955
0.9957
0.9959
0.996
0.9963
0.9964
2.6
31
2.7
2.8
0.9968
0.9977
0.9965
0.9966
0.9967
0.9969
0.997
0.9971
0,9979
0.9985
0.9973
0.9974
2.7
32
0.9974
0.9975
0.9976
0.9978
0.9977
0.9979
0.998
0.9981
2.8
33
2.9
0.9981
0.9982
0.9982
0.9983
0.9984
0.9984
0.9985
0.9986
0.9986
2.9
34
0.9987
0.9988
3
0.9987
0.9987
0.9989
0.9992
0.9988
0.9989
0.9989
0.9992
0.9994 0.9995
0.999
0.999
3
35
3.1
0.999
0.9991
0.9991
0.9991
0.9992
0.9992
0.9993
0.9995
0.9996
0.9993
3.1
36
3.2
0.9993
0.9993
0.9994
0.9996
0.9997
0.9994
0.9994
0.9994
0.9995
3.2
37
3.3
0.9995
0.9995
0.9996
0.9995
0.9996
0.9996
0.9996
0.9997
0.9997
3.3
38
3.4
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9997
0.9998
39 3.50 and up
3.4
0.9999
40 z
3.50 and up
0.01
0.02
0.03
0.04
0.05
0.06
0.09 z
41 Note: For values of z above 3.49, use 0.9999 for the area.
0.07
0.08
42 "Use these common values that result from interpolation:
43 z score
Area
44
1.645
0.95
45
2.575
0.995
46 Common Critical Values
47 Confidence Level
Critical Value
48
0.9
1.645
49
0.95
1.96
50
0.99
2.575
51
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman