use the reduced row echelon form above to solve the system 2х + 2у — z —х — 2у + 2z -3 x + y – z 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
In this problem, you are given a system of linear equations represented by the following augmented matrix, which is transformed into its reduced row echelon form (RREF):

Initial Matrix:
\[
\begin{bmatrix}
2 & 2 & -1 & 0 \\
-1 & -2 & 2 & -3 \\
1 & 1 & -1 & 2
\end{bmatrix}
\quad \sim \quad
\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & -4
\end{bmatrix}
\]

The reduced row echelon form allows us to easily read the solution to the following system of equations:

\[
\begin{cases}
2x + 2y - z = 0 \\
-x - 2y + 2z = -3 \\
x + y - z = 2
\end{cases}
\]

Using the RREF, we deduce the solutions to the variables \( x \), \( y \), and \( z \):

\[
x = 1, \quad y = -3, \quad z = -4
\]

If necessary, parameterize your answer using the free variables of the system.

Enter your answers in the matrix below:

\[
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
=
\begin{bmatrix}
1 \\
-3 \\
-4
\end{bmatrix}
\]
Transcribed Image Text:In this problem, you are given a system of linear equations represented by the following augmented matrix, which is transformed into its reduced row echelon form (RREF): Initial Matrix: \[ \begin{bmatrix} 2 & 2 & -1 & 0 \\ -1 & -2 & 2 & -3 \\ 1 & 1 & -1 & 2 \end{bmatrix} \quad \sim \quad \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & -4 \end{bmatrix} \] The reduced row echelon form allows us to easily read the solution to the following system of equations: \[ \begin{cases} 2x + 2y - z = 0 \\ -x - 2y + 2z = -3 \\ x + y - z = 2 \end{cases} \] Using the RREF, we deduce the solutions to the variables \( x \), \( y \), and \( z \): \[ x = 1, \quad y = -3, \quad z = -4 \] If necessary, parameterize your answer using the free variables of the system. Enter your answers in the matrix below: \[ \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ -4 \end{bmatrix} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,