Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the graphs of the given equations about the y-axis. y = 5√√x, y = 0, x = 1
Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the graphs of the given equations about the y-axis. y = 5√√x, y = 0, x = 1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![**Finding the Volume Using the Method of Cylindrical Shells**
To determine the volume generated by rotating the region bounded by the curves about the y-axis, apply the method of cylindrical shells. The equations provided for the curves are:
\[ y = 5\sqrt[3]{x}, \quad y = 0, \quad x = 1 \]
### Step-by-Step Solution:
1. **Identify the Boundaries:**
- The first equation \( y = 5\sqrt[3]{x} \) represents a curve.
- The second equation \( y = 0 \) represents the x-axis.
- The third boundary \( x = 1 \) is a vertical line.
2. **Setup for the Method of Cylindrical Shells:**
- When rotating around the y-axis, the height of each cylindrical shell is given by the function \( y = 5\sqrt[3]{x} \).
- The radius of each cylindrical shell is \( x \).
3. **Volume of a Single Shell:**
- The volume of a shell is given by \( 2\pi \times (\text{radius}) \times (\text{height}) \times (\text{thickness}) \).
- The thickness here is \( dx \).
- Thus, the volume element is \( dV = 2\pi x \cdot 5\sqrt[3]{x} \cdot dx \).
4. **Integrate to Find the Total Volume:**
- Integrate with respect to \( x \) from 0 to 1.
\[
V = \int_{0}^{1} 2\pi x \cdot 5\sqrt[3]{x} \, dx
\]
5. **Simplify the Integral:**
\[
V = 10\pi \int_{0}^{1} x \cdot x^{1/3} \, dx = 10\pi \int_{0}^{1} x^{4/3} \, dx
\]
6. **Evaluate the Integral:**
- The integral \( \int x^{4/3} \, dx \) can be evaluated using the power rule:
\[
\int x^{4/3} \, dx = \frac{3}{7} x^{7/3}
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa19899d9-b085-44d6-ac05-6544bc515fab%2F87f754fc-80d3-4d04-8e39-fbdb4dae7ea2%2Fqg1vy9_processed.png&w=3840&q=75)
Transcribed Image Text:**Finding the Volume Using the Method of Cylindrical Shells**
To determine the volume generated by rotating the region bounded by the curves about the y-axis, apply the method of cylindrical shells. The equations provided for the curves are:
\[ y = 5\sqrt[3]{x}, \quad y = 0, \quad x = 1 \]
### Step-by-Step Solution:
1. **Identify the Boundaries:**
- The first equation \( y = 5\sqrt[3]{x} \) represents a curve.
- The second equation \( y = 0 \) represents the x-axis.
- The third boundary \( x = 1 \) is a vertical line.
2. **Setup for the Method of Cylindrical Shells:**
- When rotating around the y-axis, the height of each cylindrical shell is given by the function \( y = 5\sqrt[3]{x} \).
- The radius of each cylindrical shell is \( x \).
3. **Volume of a Single Shell:**
- The volume of a shell is given by \( 2\pi \times (\text{radius}) \times (\text{height}) \times (\text{thickness}) \).
- The thickness here is \( dx \).
- Thus, the volume element is \( dV = 2\pi x \cdot 5\sqrt[3]{x} \cdot dx \).
4. **Integrate to Find the Total Volume:**
- Integrate with respect to \( x \) from 0 to 1.
\[
V = \int_{0}^{1} 2\pi x \cdot 5\sqrt[3]{x} \, dx
\]
5. **Simplify the Integral:**
\[
V = 10\pi \int_{0}^{1} x \cdot x^{1/3} \, dx = 10\pi \int_{0}^{1} x^{4/3} \, dx
\]
6. **Evaluate the Integral:**
- The integral \( \int x^{4/3} \, dx \) can be evaluated using the power rule:
\[
\int x^{4/3} \, dx = \frac{3}{7} x^{7/3}
\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)