Use the least squares method to find the orthogonal projection of b = [1 -2 2] onto the column space of the matrix A. A = 12 projs b = 2/3 -5/3 -7/3 ↓ ↑

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Orthogonal Projection Using the Least Squares Method**

**Problem Statement:**

Use the least squares method to find the orthogonal projection of the vector \( \mathbf{b} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \) onto the column space of the matrix \( A \).

The matrix \( A \) is given as:

\[
A = \begin{bmatrix} 
1 & 1 \\ 
1 & 2 \\ 
0 & 1 
\end{bmatrix}
\]

**Solution:**

To find the orthogonal projection of \( \mathbf{b} \) onto the column space of \( A \), we use the formula for the projection:

\[ 
\text{proj}_{S} \, \mathbf{b} = \begin{bmatrix} \frac{2}{3} \\ -\frac{5}{3} \\ -\frac{7}{3} \end{bmatrix}
\]

**Explanation of Diagram:**

The diagram includes the vector \( \text{proj}_{S} \, \mathbf{b} \), represented in a column format:

\[
\text{proj}_{S} \, \mathbf{b} = 
\begin{bmatrix} 
2/3 \\ 
-5/3 \\ 
-7/3 
\end{bmatrix}
\]

Arrows on the sides and bottom of the components indicate directions for vector manipulation or transformation, visually suggesting movement or transition within the space defined by matrix \( A \).
Transcribed Image Text:**Orthogonal Projection Using the Least Squares Method** **Problem Statement:** Use the least squares method to find the orthogonal projection of the vector \( \mathbf{b} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \) onto the column space of the matrix \( A \). The matrix \( A \) is given as: \[ A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 0 & 1 \end{bmatrix} \] **Solution:** To find the orthogonal projection of \( \mathbf{b} \) onto the column space of \( A \), we use the formula for the projection: \[ \text{proj}_{S} \, \mathbf{b} = \begin{bmatrix} \frac{2}{3} \\ -\frac{5}{3} \\ -\frac{7}{3} \end{bmatrix} \] **Explanation of Diagram:** The diagram includes the vector \( \text{proj}_{S} \, \mathbf{b} \), represented in a column format: \[ \text{proj}_{S} \, \mathbf{b} = \begin{bmatrix} 2/3 \\ -5/3 \\ -7/3 \end{bmatrix} \] Arrows on the sides and bottom of the components indicate directions for vector manipulation or transformation, visually suggesting movement or transition within the space defined by matrix \( A \).
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,