'm confused as to the definition of column space. Looking at this exercise, my understanding is that column space is the vectors that make up the span of the matrix? Could you maybe clear up the definition of column space and how it applies to this example?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I'm confused as to the definition of column space. Looking at this exercise, my understanding is that column space is the vectors that make up the span of the matrix? Could you maybe clear up the definition of column space and how it applies to this example?

Expert Solution
Step 1

Let AFm×n where F is a field. We have seen N(A), the nullspace of A, is given by {xFn:Ax=0}

The column space of A, denoted by C(A), is the span of the columns of A. In other words, the we treat the columns of A as vectors in Fm and take all possible linear combinations of these vectors to form the span. So C(A) is a subspace of Fm.

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,