Use the functions f and g in C[-1, 1] to find (f, g), |||, 9|, and d(f, g) for the inner product (f, 9) = f(x)g(x)dx. f(x) = 1, g(x) = 8x² – 1 (a) (f, 9) (b) (c) ||g|| (d) d(f, g)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(Linear Algebra)

8.

5.2

Pls help thanks

Use the functions \( f \) and \( g \) in \( C[-1, 1] \) to find \(\langle f, g \rangle\), \(\|f\|\), \(\|g\|\), and \(d(f, g)\) for the inner product:

\[
\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, dx.
\]

\( f(x) = 1 \), \quad \( g(x) = 8x^2 - 1 \)

(a) \(\langle f, g \rangle\)  
\[\text{[input box]}\]

(b) \(\|f\|\)  
\[\text{[input box]}\]

(c) \(\|g\|\)  
\[\text{[input box]}\]

(d) \(d(f, g)\)  
\[\text{[input box]}\]
Transcribed Image Text:Use the functions \( f \) and \( g \) in \( C[-1, 1] \) to find \(\langle f, g \rangle\), \(\|f\|\), \(\|g\|\), and \(d(f, g)\) for the inner product: \[ \langle f, g \rangle = \int_{-1}^{1} f(x)g(x) \, dx. \] \( f(x) = 1 \), \quad \( g(x) = 8x^2 - 1 \) (a) \(\langle f, g \rangle\) \[\text{[input box]}\] (b) \(\|f\|\) \[\text{[input box]}\] (c) \(\|g\|\) \[\text{[input box]}\] (d) \(d(f, g)\) \[\text{[input box]}\]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,