Use the formula for the binomial series: (1 + x)" 1+ mx + m(m-1)2 + m(m–1)--(m–-k+1), + + ... k! m(m–1)---(m-k+1),nt if |x| < 1 1+ Σ k=l° k! 1 to obtain the Maclaurin series for * (1+x)³ 1 – 3x + (-1)*+1(k + 2)' 4! k=2 k! (k + 3)! 1+ 3! k=1 k! 1 1 – 3x +E(-1)*(k + 2)! k! k=2 + 4)! 1– 3x + : k! k=2 Σ (k + 2)! 1+ 3x + k! k=2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use the formula for the binomial series:
mim-1)2 +
(1 + x)"
1+ тx +
2!
m(m–1)..(m-k+1) k
+
...
k!
o m(m-1)..(m-k+1)k if
1지 < 1
k!
1
to obtain the Maclaurin series for
(1 +x)³"
00
(k + 2)!
1- 3x +
4! 2
k!
k=2
00
(k + 3)!
1
1 +
3!
k=1
k!
00
1
+2
1- 3x +
2!
k=2
k!
00
(k-
1- 3x +
2!
k=2
k!
(k + 2)!
1 + 3x + >.
k!
k=2
Transcribed Image Text:Use the formula for the binomial series: mim-1)2 + (1 + x)" 1+ тx + 2! m(m–1)..(m-k+1) k + ... k! o m(m-1)..(m-k+1)k if 1지 < 1 k! 1 to obtain the Maclaurin series for (1 +x)³" 00 (k + 2)! 1- 3x + 4! 2 k! k=2 00 (k + 3)! 1 1 + 3! k=1 k! 00 1 +2 1- 3x + 2! k=2 k! 00 (k- 1- 3x + 2! k=2 k! (k + 2)! 1 + 3x + >. k! k=2
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,