Use the formula for the binomial series: (1 + x)" = m(m-1)2 + ... + 2! m(m–1).-(m-k+l) ,k + k! 1 + mx + ... 1 + Ek=1' * m(m–1)……(m-k+1) ,k if 1지 < 1 k! 1 to obtain the Maclaurin series for - (1 + x)° (k + 5)! 1 + 6x + > k.! k=2 1 – 6x +E(-1)kk+ 7)' 5! k=2 k! 1 (k + 1 – 6x +E(-1)++5)' k! k=2 (k + 6)! 1+÷) 6! k! 1 – 6x + E(-1y&+1 k + 5)! * k! 1 1— бх + k=2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use the formula for the binomial series:
m(m–1).--(m-k+!) ,k + ...
+
m(m-1) 2 +
2!
m(m–1)---(m-k+1),k if
(1+ x)" =
1 + mx +
...
1 + E
|지 < 1
k=1
k!
1
to obtain the Maclaurin series for
(1 + x)6
(k + 5)!
1 + 6x + >,
k!
k=2
1
1- 6x +
(-1)¿& + 7)!
-
5!
k=2
k!
1
1– 6x +E(-1)e k+ 5);
5!
k=2
k!
1
1 +
(k + 6)!
6!
k=1
k!
1
1- 6x + (–1)*+1
k!
2(-1)*+1k + 5)!
7!
k=2
Transcribed Image Text:Use the formula for the binomial series: m(m–1).--(m-k+!) ,k + ... + m(m-1) 2 + 2! m(m–1)---(m-k+1),k if (1+ x)" = 1 + mx + ... 1 + E |지 < 1 k=1 k! 1 to obtain the Maclaurin series for (1 + x)6 (k + 5)! 1 + 6x + >, k! k=2 1 1- 6x + (-1)¿& + 7)! - 5! k=2 k! 1 1– 6x +E(-1)e k+ 5); 5! k=2 k! 1 1 + (k + 6)! 6! k=1 k! 1 1- 6x + (–1)*+1 k! 2(-1)*+1k + 5)! 7! k=2
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,