Use the following table to answer question questions # 9 and # 10. f(x) g(x) f'(x) _g'(x) 1 2 1 3 2 1 3 3 3 1 3 1 9. If h(x) = f(g(x)), what is h'(1)? 10. If H(x) = g(f (x)), what is H'(3)?
Use the following table to answer question questions # 9 and # 10. f(x) g(x) f'(x) _g'(x) 1 2 1 3 2 1 3 3 3 1 3 1 9. If h(x) = f(g(x)), what is h'(1)? 10. If H(x) = g(f (x)), what is H'(3)?
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
100%
question has been uploaded below
![### Function Table and Derivative Analysis
Use the following table to answer questions #9 and #10:
| \( x \) | \( f(x) \) | \( g(x) \) | \( f'(x) \) | \( g'(x) \) |
|---------|------------|------------|------------|------------|
| 1 | 2 | 1 | 3 | 2 |
| 2 | 2 | 2 | 1 | 3 |
| 3 | 3 | 1 | 3 | 1 |
#### Question 9
**If \( h(x) = f(g(x)) \), what is \( h'(1) \)?**
#### Question 10
**If \( H(x) = g(f(x)) \), what is \( H'(3) \)?**
### Explanation
#### Question 9:
To find \( h'(x) \) where \( h(x) = f(g(x)) \), we need to use the chain rule:
\[ h'(x) = f'(g(x)) \cdot g'(x) \]
Given \( x = 1 \):
1. First, find \( g(1) \). From the table, \( g(1) = 1 \).
2. Then, find \( f'(g(1)) \). Since \( g(1) = 1 \), we look at \( f'(1) \), which is 3.
3. Also, find \( g'(1) \). From the table, \( g'(1) = 2 \).
Therefore:
\[ h'(1) = f'(g(1)) \cdot g'(1) = f'(1) \cdot g'(1) = 3 \cdot 2 = 6 \]
So, \( h'(1) = 6 \).
#### Question 10:
To find \( H'(x) \) where \( H(x) = g(f(x)) \), we use the chain rule:
\[ H'(x) = g'(f(x)) \cdot f'(x) \]
Given \( x = 3 \):
1. First, find \( f(3) \). From the table, \( f(3) = 3 \).
2. Then, find \( g'(f(3))](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd45308af-f507-4349-a094-dce43ad17ed2%2F4db65729-b899-4ecd-88c2-e431effb58a0%2Fu3er0i.png&w=3840&q=75)
Transcribed Image Text:### Function Table and Derivative Analysis
Use the following table to answer questions #9 and #10:
| \( x \) | \( f(x) \) | \( g(x) \) | \( f'(x) \) | \( g'(x) \) |
|---------|------------|------------|------------|------------|
| 1 | 2 | 1 | 3 | 2 |
| 2 | 2 | 2 | 1 | 3 |
| 3 | 3 | 1 | 3 | 1 |
#### Question 9
**If \( h(x) = f(g(x)) \), what is \( h'(1) \)?**
#### Question 10
**If \( H(x) = g(f(x)) \), what is \( H'(3) \)?**
### Explanation
#### Question 9:
To find \( h'(x) \) where \( h(x) = f(g(x)) \), we need to use the chain rule:
\[ h'(x) = f'(g(x)) \cdot g'(x) \]
Given \( x = 1 \):
1. First, find \( g(1) \). From the table, \( g(1) = 1 \).
2. Then, find \( f'(g(1)) \). Since \( g(1) = 1 \), we look at \( f'(1) \), which is 3.
3. Also, find \( g'(1) \). From the table, \( g'(1) = 2 \).
Therefore:
\[ h'(1) = f'(g(1)) \cdot g'(1) = f'(1) \cdot g'(1) = 3 \cdot 2 = 6 \]
So, \( h'(1) = 6 \).
#### Question 10:
To find \( H'(x) \) where \( H(x) = g(f(x)) \), we use the chain rule:
\[ H'(x) = g'(f(x)) \cdot f'(x) \]
Given \( x = 3 \):
1. First, find \( f(3) \). From the table, \( f(3) = 3 \).
2. Then, find \( g'(f(3))
![### Table of Functions and Their Derivatives
The following table is provided to answer questions #9 and #10.
| \( x \) | \( f(x) \) | \( g(x) \) | \( f'(x) \) | \( g'(x) \) |
|--------|------------|------------|-------------|-------------|
| 1 | 2 | 1 | 3 | 2 |
| 2 | 2 | 2 | 1 | 3 |
| 3 | 3 | 1 | 3 | 1 |
### Questions
#### 9. If \( h(x) = f(g(x)) \), what is \( h'(1) \)?
#### 10. If \( H(x) = g(f(x)) \), what is \( H'(3) \)?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd45308af-f507-4349-a094-dce43ad17ed2%2F4db65729-b899-4ecd-88c2-e431effb58a0%2Fmgpummq.png&w=3840&q=75)
Transcribed Image Text:### Table of Functions and Their Derivatives
The following table is provided to answer questions #9 and #10.
| \( x \) | \( f(x) \) | \( g(x) \) | \( f'(x) \) | \( g'(x) \) |
|--------|------------|------------|-------------|-------------|
| 1 | 2 | 1 | 3 | 2 |
| 2 | 2 | 2 | 1 | 3 |
| 3 | 3 | 1 | 3 | 1 |
### Questions
#### 9. If \( h(x) = f(g(x)) \), what is \( h'(1) \)?
#### 10. If \( H(x) = g(f(x)) \), what is \( H'(3) \)?
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning