Use the following orthogonal polynomials on (0, 1) with respect to the weight function w(x)=1 Po-1, P,-x- P-x²-x+ P2=x-x+6 to construct the least square polynomial approximation of degree 2 for for f(x)=sin x, xE(0,1). Then a= O a. 12 sin 1+6 cos 1-12 O b. 6 cos 1-12 sin 1 -12 Oc 12 cos 1-6 sin 1-6 O d. 6 cos 1+12 sin 1-6 O e. 12 cos 1 +6 sin 1-12 O f. 6 sin 1-6 cos 1-12 g. 12 sin 1-6 cos 1-6
Use the following orthogonal polynomials on (0, 1) with respect to the weight function w(x)=1 Po-1, P,-x- P-x²-x+ P2=x-x+6 to construct the least square polynomial approximation of degree 2 for for f(x)=sin x, xE(0,1). Then a= O a. 12 sin 1+6 cos 1-12 O b. 6 cos 1-12 sin 1 -12 Oc 12 cos 1-6 sin 1-6 O d. 6 cos 1+12 sin 1-6 O e. 12 cos 1 +6 sin 1-12 O f. 6 sin 1-6 cos 1-12 g. 12 sin 1-6 cos 1-6
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Concept explainers
Equations and Inequations
Equations and inequalities describe the relationship between two mathematical expressions.
Linear Functions
A linear function can just be a constant, or it can be the constant multiplied with the variable like x or y. If the variables are of the form, x2, x1/2 or y2 it is not linear. The exponent over the variables should always be 1.
Question
Help me fast with detail explanation.
Definitely I will give Upvote.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,