Use the following orthogonal polynomials on (0, 1) with respect to the weight function w(x)=1 Po-1, P,-x- P-x²-x+ P2=x-x+6 to construct the least square polynomial approximation of degree 2 for for f(x)=sin x, xE(0,1). Then a= O a. 12 sin 1+6 cos 1-12 O b. 6 cos 1-12 sin 1 -12 Oc 12 cos 1-6 sin 1-6 O d. 6 cos 1+12 sin 1-6 O e. 12 cos 1 +6 sin 1-12 O f. 6 sin 1-6 cos 1-12 g. 12 sin 1-6 cos 1-6

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Help me fast with detail explanation.

Definitely I will give Upvote.

Use the following orthogonal polynomials on (0, 1) with respect to the weight function w(x)=1
Po=1, P=x-, P2=x²-x+
メーデュニポーメ品
to construct the least square polynomial approximation of degree 2 for for f(x)= sin x, x €(0,1).
Then a4=
O a. 12 sin 1 +6 cos 1-12
O b. 6 cos 1- 12 sin 1 - 12
Oc. 12 cos 1-6 sin 1-6
O d. 6 cos 1 +12 sin 1-6
O e. 12 cos 1 +6 sin 1 - 12
O f. 6 sin 1 -6 cos 1-12
O g. 12 sin 1 -6 cos 1 6
Transcribed Image Text:Use the following orthogonal polynomials on (0, 1) with respect to the weight function w(x)=1 Po=1, P=x-, P2=x²-x+ メーデュニポーメ品 to construct the least square polynomial approximation of degree 2 for for f(x)= sin x, x €(0,1). Then a4= O a. 12 sin 1 +6 cos 1-12 O b. 6 cos 1- 12 sin 1 - 12 Oc. 12 cos 1-6 sin 1-6 O d. 6 cos 1 +12 sin 1-6 O e. 12 cos 1 +6 sin 1 - 12 O f. 6 sin 1 -6 cos 1-12 O g. 12 sin 1 -6 cos 1 6
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Linear Equations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,