Use the following chart to develop an explicit formula for the geometric sequence. Choose the correct formula. Input (n) Output (n) 1 4 2 3 16 32 5 64 6. 128 f (n) = 4 * 40-1 b a f(n) = 4 * 2n-1 f(n) = 4 * 2n+1 d f (n) = 4 * 2"

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use the following chart to develop an explicit formula for the geometric sequence. Choose the correct formula.

| Input (n) | Output (f(n)) |
|-----------|---------------|
| 1         | 4             |
| 2         | 8             |
| 3         | 16            |
| 4         | 32            |
| 5         | 64            |
| 6         | 128           |

Options:
- a) \( f(n) = 4 \times 4^{n-1} \)
- b) \( f(n) = 4 \times 2^{n-1} \)
- c) \( f(n) = 4 \times 2^{n+1} \)
- d) \( f(n) = 4 \times 2^n \)
Transcribed Image Text:Use the following chart to develop an explicit formula for the geometric sequence. Choose the correct formula. | Input (n) | Output (f(n)) | |-----------|---------------| | 1 | 4 | | 2 | 8 | | 3 | 16 | | 4 | 32 | | 5 | 64 | | 6 | 128 | Options: - a) \( f(n) = 4 \times 4^{n-1} \) - b) \( f(n) = 4 \times 2^{n-1} \) - c) \( f(n) = 4 \times 2^{n+1} \) - d) \( f(n) = 4 \times 2^n \)
Expert Solution
Step 1

The solution is given as

 

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,