Use the fact that matrices A and B are row-equivalent. -2 -5 80-17 1 A = 3 -5 1 -9 5 -9 7 -13 5 -3 1 0 0 1-2 0 3 0 0 1 0 B = 0 1-5 0 0 0 0 (a) Find the rank and nullity of A. rank nullity (b) Find a basis for the nullspace of A. (c) Find a basis for the row space of A. (d) Find a basis for the column space of A. 11

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use the fact that matrices \( A \) and \( B \) are row-equivalent.

\[
A = \begin{bmatrix}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
1 & 5 & -9 & 5 & -9 \\
1 & 7 & -13 & 5 & -3 \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & -2 & 0 & 3 \\
0 & 0 & 0 & 1 & -5 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

(a) Find the rank and nullity of \( A \).

Rank: [   ]

Nullity: [   ]

(b) Find a basis for the nullspace of \( A \).

\[
\left\{
\begin{bmatrix} \\ \\ \\ 
\end{bmatrix},
\begin{bmatrix} \\ \\ \\ 
\end{bmatrix}
\right\}
\]

(c) Find a basis for the row space of \( A \).

\[
\left\{
\begin{bmatrix} & & & &  \\ \end{bmatrix},
\begin{bmatrix} & & & &  \\ \end{bmatrix},
\begin{bmatrix} & & & &  \\ \end{bmatrix}
\right\}
\]

(d) Find a basis for the column space of \( A \).

\[
\left\{
\begin{bmatrix} \\ \\ \\ 
\end{bmatrix},
\begin{bmatrix} \\ \\ \\ 
\end{bmatrix},
\begin{bmatrix} \\ \\ \\ 
\end{bmatrix}
\right\}
\]
Transcribed Image Text:Use the fact that matrices \( A \) and \( B \) are row-equivalent. \[ A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 1 & 5 & -9 & 5 & -9 \\ 1 & 7 & -13 & 5 & -3 \\ \end{bmatrix} \] \[ B = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -2 & 0 & 3 \\ 0 & 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \] (a) Find the rank and nullity of \( A \). Rank: [ ] Nullity: [ ] (b) Find a basis for the nullspace of \( A \). \[ \left\{ \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \begin{bmatrix} \\ \\ \\ \end{bmatrix} \right\} \] (c) Find a basis for the row space of \( A \). \[ \left\{ \begin{bmatrix} & & & & \\ \end{bmatrix}, \begin{bmatrix} & & & & \\ \end{bmatrix}, \begin{bmatrix} & & & & \\ \end{bmatrix} \right\} \] (d) Find a basis for the column space of \( A \). \[ \left\{ \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \begin{bmatrix} \\ \\ \\ \end{bmatrix} \right\} \]
### Problem Set on Linear Algebra

**(c) Find a basis for the row space of A.**

There is a matrix on the left side, represented with open brackets indicating the rows of the matrix. An arrow points right, indicating the basis for the row space is to be determined.

**(d) Find a basis for the column space of A.**

The image depicts a matrix with open brackets indicating the columns of the matrix. Arrows indicate that the basis for the column space is to be determined.

**(e) Determine whether or not the rows of A are linearly independent.**

- Independent
- Dependent

A selection is to be made based on the linear dependence or independence of the rows.

**(f) Let the columns of A be denoted by \(a_1, a_2, a_3, a_4,\) and \(a_5\). Which of the following sets is (are) linearly independent? (Select all that apply.)**

Options are provided with checkboxes:

- \(\{a_1, a_2, a_4\}\)
- \(\{a_1, a_2, a_3\}\)
- \(\{a_1, a_3, a_5\}\)

In this problem, the user is expected to analyze the linear independence of the given sets of columns and select the appropriate options.
Transcribed Image Text:### Problem Set on Linear Algebra **(c) Find a basis for the row space of A.** There is a matrix on the left side, represented with open brackets indicating the rows of the matrix. An arrow points right, indicating the basis for the row space is to be determined. **(d) Find a basis for the column space of A.** The image depicts a matrix with open brackets indicating the columns of the matrix. Arrows indicate that the basis for the column space is to be determined. **(e) Determine whether or not the rows of A are linearly independent.** - Independent - Dependent A selection is to be made based on the linear dependence or independence of the rows. **(f) Let the columns of A be denoted by \(a_1, a_2, a_3, a_4,\) and \(a_5\). Which of the following sets is (are) linearly independent? (Select all that apply.)** Options are provided with checkboxes: - \(\{a_1, a_2, a_4\}\) - \(\{a_1, a_2, a_3\}\) - \(\{a_1, a_3, a_5\}\) In this problem, the user is expected to analyze the linear independence of the given sets of columns and select the appropriate options.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,