Use MP, MT, DS, and HS to prove that the following arguments are valid. (1) 1. R (10) 1. (ADB) C DVA 2. 3. 4. ~A/. C 2. SDR/.. ~ S (2) 1. A S * 2. (A.S) DR/.. R (3) 1. ~ (HK) 2. Rv (H.K)/:. R (4) 1. (PvQ) (R. W) 2. LD (PVO)/:. LD (RW) (5) 1. RDS 2. TDR 3. ~S/. ~T (6) 1. ~M 2. NDG 3. NvM/:. G (7) 1. DDE DDF 3. F. E 2 (11) 1. AD (BOC) 2. C 3. 4. (12) 1. ~DD (ADB) (13) 1. 2. 3. 4. ~ (D-F) 2. (LVM) VR 3. 4. 2 - DDA CvD/:. ~ B ~ ~T~(LVM) (D F) v~ T/:. R ~ . (A v B) (Bv C) (BDC) VA (BDC) (Av B) -Al.. Bv C ~ 4) 1. (PO) [Rv (T-S)] 2. (TVR) (P.Q) 3. ~ (T.S)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
For the second picture I only need numbers #11 and #13 to be done For each proof, you must include (i.e., write) the premises in that proof. I do not want to see any proofs without premises. Do not use any transformation rules (e.g. contraposition) in your proof other than DN. Only use the eight inference rules. YOU CANNOT USE CONDITIONAL PROOF (CP), INDIRECT PROOF (IP), OR ASSUMED PREMISES (AP).
Use MP, MT, DS, and HS to prove that the following arguments are valid.
(1) 1. R
2. SDR/.. ~ S
-
(2) 1. A S
.
2. (A.S) DR/.. R
(3) 1. (HK)
2. Rv (H.K)/:. R
~
(4) 1. (PvQ) (R. W)
2. LD (PVO)/:. LD (RW)
(5) 1. RDS
2. TOR
3.
(6) 1.
(7) 1.
~M
2. NDG
3. Nv M/. G
~S/. ~ T
2
DDE
DDF
3. F. E
(8) 1. GvH
2. HVI
3. I/. G
(9) 1 ~GRAY BY
2
(10) 1. (AB) C
DVA
2.
3.
4.
~
~A/. C
(11) 1. AƆ (BƆC)
2.
~ C
3.
4.
~DDA
CvD/:. ~ B
DD (ADB)
(12) 1. (DF)
~
2. (LVM) VR
3.
4.
~
~T~(LVM)
(D F) v~ T/:. R
~
(13) 1.
(A v B) Ɔ (Bv C)
(BC) VA
2.
3. (BDC) (A v B)
4.
-Al.. Bv C
.
4) 1. (PQ) [Rv (T-S)]
2. (TvR)
(P.Q)
3.
4.
~
(T.S)
TVRI.. R
Transcribed Image Text:Use MP, MT, DS, and HS to prove that the following arguments are valid. (1) 1. R 2. SDR/.. ~ S - (2) 1. A S . 2. (A.S) DR/.. R (3) 1. (HK) 2. Rv (H.K)/:. R ~ (4) 1. (PvQ) (R. W) 2. LD (PVO)/:. LD (RW) (5) 1. RDS 2. TOR 3. (6) 1. (7) 1. ~M 2. NDG 3. Nv M/. G ~S/. ~ T 2 DDE DDF 3. F. E (8) 1. GvH 2. HVI 3. I/. G (9) 1 ~GRAY BY 2 (10) 1. (AB) C DVA 2. 3. 4. ~ ~A/. C (11) 1. AƆ (BƆC) 2. ~ C 3. 4. ~DDA CvD/:. ~ B DD (ADB) (12) 1. (DF) ~ 2. (LVM) VR 3. 4. ~ ~T~(LVM) (D F) v~ T/:. R ~ (13) 1. (A v B) Ɔ (Bv C) (BC) VA 2. 3. (BDC) (A v B) 4. -Al.. Bv C . 4) 1. (PQ) [Rv (T-S)] 2. (TvR) (P.Q) 3. 4. ~ (T.S) TVRI.. R
1.
2.
3.
1. Cv (~Dv-X)
2. ~C
3. X
1. AD B
2. B
3. ~AD (~Cv B)
1. AD D
2. ~Dv (~B~~~~A)
3. ~A
4. ~B
/~D (Note: /~D means: prove ~D)
/~C
/~~~~A
Transcribed Image Text:1. 2. 3. 1. Cv (~Dv-X) 2. ~C 3. X 1. AD B 2. B 3. ~AD (~Cv B) 1. AD D 2. ~Dv (~B~~~~A) 3. ~A 4. ~B /~D (Note: /~D means: prove ~D) /~C /~~~~A
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,