Use Laplace Transforms to solve the initial value problem [y'+3y=f(x),y(0) =0] where 0Sx and x < f(x) = 4 23x -3x 2 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

will rate if correct. 

Use Laplace Transforms to solve the initial value problem
[y'+3y=f(x),y(0) =0]
where
O<x and x << 2
f(x) =
4
23x
-3x
2
0<x and x <2
3
a) O y(x) =
2
4
2 6-3x
-3x
+
3
2 <x
-
-3x
2
+
O<x and x << 2
e
b) O y(x) =
4
2
-3x
+
e
3
6-3x
e
3
2 <x
-3x
2
0<x and x < 2
3
c) O y(x) =
6- 3x
-3x
e
3
2 3x
3
2
-3%
e
O<x and x <2
-
d) O y(x) =
2
-3x
+
6-3x
2 e
2 <x
-3x
2
0 <x and x < 2
e) O y(x) =
2 -3x
4
2 6-3x
e
3
2 3x
f)
None of the above.
Transcribed Image Text:Use Laplace Transforms to solve the initial value problem [y'+3y=f(x),y(0) =0] where O<x and x << 2 f(x) = 4 23x -3x 2 0<x and x <2 3 a) O y(x) = 2 4 2 6-3x -3x + 3 2 <x - -3x 2 + O<x and x << 2 e b) O y(x) = 4 2 -3x + e 3 6-3x e 3 2 <x -3x 2 0<x and x < 2 3 c) O y(x) = 6- 3x -3x e 3 2 3x 3 2 -3% e O<x and x <2 - d) O y(x) = 2 -3x + 6-3x 2 e 2 <x -3x 2 0 <x and x < 2 e) O y(x) = 2 -3x 4 2 6-3x e 3 2 3x f) None of the above.
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,