use java to solve Have the construction of the 2D integer array magic square take place in a public static method getMagicSquare that takes in an integer n as a parameter and returns the 2D integer array magic square as specified.  Your main method should perform input and output (I/O) and call this method to perform the computation. Create a class MagicSquare that prompts the user for a positive odd integer size, generates a normal magic square of order size, and prints it with numbers right-justified and aligned in evenly-spaced columns. You may assume the numbers in the square are 3 digits or less (i.e. size ≤ 31).  However, each space-separated column should have a width equal to the largest integer in the magic square.  (See example transcripts below.) To generate the magic square, use the following algorithm:  Assign 1 to our initial current position: the bottom row, middle column.  Place each successive value (up to size * size) in the first of the following positions that is unoccupied: (1) one space down and to the right, or (2) one space up.  Positions wrap around the sides, top and bottom, as shown in the following example transcripts (user input underlined):

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

use java to solve Have the construction of the 2D integer array magic square take place in a public static method getMagicSquare that takes in an integer n as a parameter and returns the 2D integer array magic square as specified.  Your main method should perform input and output (I/O) and call this method to perform the computation.

Create a class MagicSquare that prompts the user for a positive odd integer size, generates a normal magic square of order size, and prints it with numbers right-justified and aligned in evenly-spaced columns. You may assume the numbers in the square are 3 digits or less (i.e. size ≤ 31).  However, each space-separated column should have a width equal to the largest integer in the magic square.  (See example transcripts below.)

To generate the magic square, use the following algorithm:  Assign 1 to our initial current position: the bottom row, middle column.  Place each successive value (up to size * size) in the first of the following positions that is unoccupied: (1) one space down and to the right, or (2) one space up.  Positions wrap around the sides, top and bottom, as shown in the following example transcripts (user input underlined):

Please enter a positive odd integer: 19
68 89 110
172 193 214 235 256 277 298 319 340 361 2 23 44 65 86 107 128 149 170
171 173 194 215 236 257 278 299 320 341 343 3 24 45 66 87 108 129 150
151 153 174 195 216 237 258 279 300 321 342 344 4 25 46 67 88 109 130
131 152 154 175 196 217 238 259 280 301 322 324 345 5 26 47
111 132 134 155 176 197 218 239 260 281 302 323 325 346 6 27 48 69 90
91 112 133 135 156 177 198 219 240 261 282 303 305 326 347 7 28 49 70
71 92 113 115 136 157 178 199 220 241 262 283 304 306 327 348 8 29 50
51 72 93 114 116 137 158 179 200 221 242 263 284 286 307 328 349 9 30
31 52 73 94 96 117 138 159 180 201 222 243 264 285 287 308 329 350 10
11 32 53 74 95 97 118 139 160 181 202 223 244 265 267 288 309 330 351
352 12 33 54 75 77 98 119 140 161 182 203 224 245 266 268 289 310 331
55 76
35 56
15 36
272 293 314 335 356 16
78
99 120 141 162 183 204 225 246 248 269 290 311
332 353 13 34
312 333 354 14
58
79 100 121 142 163 184 205 226
247 249 270 291
292 313 334 355
57
59
80 101 122 143 164 185 206 227 229 250 271
37
39
60
81 102 123 144 165
186 207 228 230 251
40
252 273 294 315 336 357 17 38
232 253 274 295 316 337 358 18 20
212 233 254 275 296 317 338 359 19
192 213 234 255 276 297 318 339 360
61
41
82 103 124 145 166 187 208 210 231
83 104 125 146 167 188 209 211
84 105 126 147 168 189 191
64 85 106 127 148 169 190
62
21 42 63
1 22 43
Have the construction of the 2D integer array magic square take place in a public static method getMagicSquare that takes in an integer n as a parameter and returns the 2D integer array magic square as
specified. Your main method should perform input and output (I/O) and call this method to perform the computation.
Transcribed Image Text:Please enter a positive odd integer: 19 68 89 110 172 193 214 235 256 277 298 319 340 361 2 23 44 65 86 107 128 149 170 171 173 194 215 236 257 278 299 320 341 343 3 24 45 66 87 108 129 150 151 153 174 195 216 237 258 279 300 321 342 344 4 25 46 67 88 109 130 131 152 154 175 196 217 238 259 280 301 322 324 345 5 26 47 111 132 134 155 176 197 218 239 260 281 302 323 325 346 6 27 48 69 90 91 112 133 135 156 177 198 219 240 261 282 303 305 326 347 7 28 49 70 71 92 113 115 136 157 178 199 220 241 262 283 304 306 327 348 8 29 50 51 72 93 114 116 137 158 179 200 221 242 263 284 286 307 328 349 9 30 31 52 73 94 96 117 138 159 180 201 222 243 264 285 287 308 329 350 10 11 32 53 74 95 97 118 139 160 181 202 223 244 265 267 288 309 330 351 352 12 33 54 75 77 98 119 140 161 182 203 224 245 266 268 289 310 331 55 76 35 56 15 36 272 293 314 335 356 16 78 99 120 141 162 183 204 225 246 248 269 290 311 332 353 13 34 312 333 354 14 58 79 100 121 142 163 184 205 226 247 249 270 291 292 313 334 355 57 59 80 101 122 143 164 185 206 227 229 250 271 37 39 60 81 102 123 144 165 186 207 228 230 251 40 252 273 294 315 336 357 17 38 232 253 274 295 316 337 358 18 20 212 233 254 275 296 317 338 359 19 192 213 234 255 276 297 318 339 360 61 41 82 103 124 145 166 187 208 210 231 83 104 125 146 167 188 209 211 84 105 126 147 168 189 191 64 85 106 127 148 169 190 62 21 42 63 1 22 43 Have the construction of the 2D integer array magic square take place in a public static method getMagicSquare that takes in an integer n as a parameter and returns the 2D integer array magic square as specified. Your main method should perform input and output (I/O) and call this method to perform the computation.
1. Divisors: In a class Divisors.java, read in a maximum integer n and use nested loops to print a list of divisors for each of 1 through n as shown in the following transcript.
Sample transcript (input underlined):
Largest integer? 100
1: 1
2: 1 2
3: 1 3
4: 1 2 4
95: 1 5 19 95
96: 1 2 3 4 6 8 12 16 24 32 48 96
97: 1 97
98: 1 2 7
14 49 98
99: 1 3 9
11 33 99
100: 1 2 4 5 10 20 25 50 100
Transcribed Image Text:1. Divisors: In a class Divisors.java, read in a maximum integer n and use nested loops to print a list of divisors for each of 1 through n as shown in the following transcript. Sample transcript (input underlined): Largest integer? 100 1: 1 2: 1 2 3: 1 3 4: 1 2 4 95: 1 5 19 95 96: 1 2 3 4 6 8 12 16 24 32 48 96 97: 1 97 98: 1 2 7 14 49 98 99: 1 3 9 11 33 99 100: 1 2 4 5 10 20 25 50 100
Expert Solution
steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Knowledge Booster
Arrays
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education