USE GRESA METHOD TO SOLVE THIS PROBLEM 3. A 1.50 x 10³ kg car, whose front is facing to the right (towards +x-axis) and whose engine is turned off and in neutral, is held at rest on a frictionless ramp using a cable whose one end is attached to the car's front at an angle 27.0° with respect to the ramp's surface. The other end of the cable is attached to a wall perpendicular to the horizontal and the ramp is raised 30.0° above the horizontal. (Note: A free-body diagram (FBD) is required in this problem) (a) Find the force exerted by the ramp on the car's wheels. (b) Find the tension on the cable. (c) Suppose the wall where the other end of the cable was attached was replaced by a rotating motor. If the car is now accelerating towards the peak of the ramp at 3.00 m/s² due to the rotating motor, how much tension is being exerted by the cable on the car?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
USE GRESA METHOD FOR THE SOLUTION 3. A 1.50 x 103 kg car, whose front is facing to the right (towards +x-axis) and whose engine is turned off and in neutral, is held at rest on a frictionless ramp using a cable whose one end is attached to the car's front at an angle 27.0° with respect to the ramp's surface. The other end of the cable is attached to a wall perpendicular to the horizontal and the ramp is raised 30.0° above the horizontal. (Note: A free-body diagram (FBD) is required in this problem) (a) Find the force exerted by the ramp on the car's wheels. (b) Find the tension on the cable. (c) Suppose the wall where the other end of the cable was attached was replaced by a rotating motor. If the car is now accelerating towards the peak of the ramp at 3.00 m/s2 due to the rotating motor, how much tension is being exerted by the cable on the car?
USE GRESA METHOD TO SOLVE THIS PROBLEM
3. A 1.50 x 10³ kg car, whose front is facing to the right (towards +x-axis) and whose engine is turned off and in
neutral, is held at rest on a frictionless ramp using a cable whose one end is attached to the car's front at an angle
27.0° with respect to the ramp's surface. The other end of the cable is attached to a wall perpendicular to the
horizontal and the ramp is raised 30.0° above the horizontal. (Note: A free-body diagram (FBD) is required in this
problem)
(a) Find the force exerted by the ramp on the car's wheels.
(b) Find the tension on the cable.
(c) Suppose the wall where the other end of the cable was attached was replaced by a rotating motor. If the
car is now accelerating towards the peak of the ramp at 3.00 m/s² due to the rotating motor, how much
tension is being exerted by the cable on the car?
Transcribed Image Text:USE GRESA METHOD TO SOLVE THIS PROBLEM 3. A 1.50 x 10³ kg car, whose front is facing to the right (towards +x-axis) and whose engine is turned off and in neutral, is held at rest on a frictionless ramp using a cable whose one end is attached to the car's front at an angle 27.0° with respect to the ramp's surface. The other end of the cable is attached to a wall perpendicular to the horizontal and the ramp is raised 30.0° above the horizontal. (Note: A free-body diagram (FBD) is required in this problem) (a) Find the force exerted by the ramp on the car's wheels. (b) Find the tension on the cable. (c) Suppose the wall where the other end of the cable was attached was replaced by a rotating motor. If the car is now accelerating towards the peak of the ramp at 3.00 m/s² due to the rotating motor, how much tension is being exerted by the cable on the car?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 5 images

Blurred answer
Knowledge Booster
Mechanical Equilibrium
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON