Use a software program or a graphing utility to (a) find the transition matrix from B to B′, (b) find the transition matrix from B′ to B, (c) verify that the two transition matrices are inverses of each other, and (d) find the coordinate matrix [x]B, given the coordinate matrix [x]B′.B = {(1, −1, 9), (−9, 1, 1), (1, 9, −1)},B′ = {(3, 0, 3), (−3, 3, 0), (0, −3, 3)},[x]B′ = [−5 −4 1]T

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Use a software program or a graphing utility to
(a) find the transition matrix from B to B′,
(b) find the transition matrix from B′ to B,
(c) verify that the two transition matrices are inverses of each other, and
(d) find the coordinate matrix [x]B, given the coordinate matrix [x]B′.
B = {(1, −1, 9), (−9, 1, 1), (1, 9, −1)},
B′ = {(3, 0, 3), (−3, 3, 0), (0, −3, 3)},
[x]B′ = [−5 −4 1]T

Expert Solution
Step 1: Find the transition matrix from B to B'.

(a)

The given bases are:

table attributes columnalign right center left columnspacing 0px end attributes row B equals cell open curly brackets open parentheses 1 comma negative 1 comma 9 close parentheses comma open parentheses negative 9 comma 1 comma 1 close parentheses comma open parentheses 1 comma 9 comma negative 1 close parentheses close curly brackets end cell row cell B apostrophe end cell equals cell open curly brackets open parentheses 3 comma 0 comma 3 close parentheses comma open parentheses negative 3 comma 3 comma 0 close parentheses comma open parentheses 0 comma negative 3 comma 3 close parentheses close curly brackets end cell end table

Now, write augmented matrix: open square brackets B colon B apostrophe close square brackets equals open square brackets table row 1 cell negative 9 end cell 1 row cell negative 1 end cell 1 9 row 9 1 cell negative 1 end cell end table left enclose table row 3 cell negative 3 end cell 0 row 0 3 cell negative 3 end cell row 3 0 3 end table end enclose close square brackets.

The reduced row echelon form is as shown below.

Advanced Math homework question answer, step 1, image 1

So, the transition matrix from B to B' is:

P equals box enclose open square brackets table row cell 0.373 end cell cell negative 0.008 end cell cell 0.3 end cell row cell negative 0.284 end cell cell 0.365 end cell 0 row cell 0.073 end cell cell 0.292 end cell cell negative 0.3 end cell end table close square brackets end enclose.

Step 2: Find the transition matrix from B' to B.

(b)

The given bases are:

table attributes columnalign right center left columnspacing 0px end attributes row B equals cell open curly brackets open parentheses 1 comma negative 1 comma 9 close parentheses comma open parentheses negative 9 comma 1 comma 1 close parentheses comma open parentheses 1 comma 9 comma negative 1 close parentheses close curly brackets end cell row cell B apostrophe end cell equals cell open curly brackets open parentheses 3 comma 0 comma 3 close parentheses comma open parentheses negative 3 comma 3 comma 0 close parentheses comma open parentheses 0 comma negative 3 comma 3 close parentheses close curly brackets end cell end table

Now, write augmented matrix: open square brackets B apostrophe colon B close square brackets equals open square brackets table row 3 cell negative 3 end cell 0 row 0 3 cell negative 3 end cell row 3 0 3 end table left enclose table row 1 cell negative 9 end cell 1 row cell negative 1 end cell 1 9 row 9 1 cell negative 1 end cell end table end enclose close square brackets.

The reduced row echelon form is as shown below.

Advanced Math homework question answer, step 2, image 1

So, the transition matrix from B' to B is:

Q equals box enclose open square brackets table row cell 1.5 end cell cell negative 1.17 end cell cell 1.5 end cell row cell 1.17 end cell cell 1.83 end cell cell 1.17 end cell row cell 1.5 end cell cell 1.5 end cell cell negative 1.83 end cell end table close square brackets end enclose.

Step 3: Verify that the matrices are inverse of each other.

(c)

Find the product P Q.

P Q equals open square brackets table row cell 0.373 end cell cell negative 0.008 end cell cell 0.3 end cell row cell negative 0.284 end cell cell 0.365 end cell 0 row cell 0.073 end cell cell 0.292 end cell cell negative 0.3 end cell end table close square brackets open square brackets table row cell 1.5 end cell cell negative 1.17 end cell cell 1.5 end cell row cell 1.17 end cell cell 1.83 end cell cell 1.17 end cell row cell 1.5 end cell cell 1.5 end cell cell negative 1.83 end cell end table close square brackets.

Using graphic calculator the prdocut is shown below.

Advanced Math homework question answer, step 3, image 1


So, we can see that:

P Q equals open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets.

So, both the matrices are inverse of each other.


steps

Step by step

Solved in 5 steps with 20 images

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,