Find the B-matrix for the transformation x-Ax when B=(b₁,b₂, b3}. A= -7 -72 1 17 -4 -72-21 The B-matrix is - 18 - 5, b₁ = -4 -4 ,b₂= -3 4 b3 4 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Description:**

Find the \( B \)-matrix for the transformation \( x \mapsto Ax \) when \( B = \{ \mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3} \} \).

**Matrix \( A \):**

\[
A = \begin{bmatrix}
-7 & -72 & -18 \\
1 & 17 & 5 \\
-4 & -72 & -21
\end{bmatrix}
\]

**Vectors in Basis \( B \):**

\[
\mathbf{b_1} = \begin{bmatrix} -4 \\ 1 \\ -4 \end{bmatrix}, \quad
\mathbf{b_2} = \begin{bmatrix} -4 \\ 1 \\ -4 \end{bmatrix}, \quad
\mathbf{b_3} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}
\]

**Solution:**

Calculate the \( B \)-matrix based on the given transformation and basis.

**Answer:**

The \( B \)-matrix is \(\boxed{\phantom{answer}}\).
Transcribed Image Text:**Problem Description:** Find the \( B \)-matrix for the transformation \( x \mapsto Ax \) when \( B = \{ \mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3} \} \). **Matrix \( A \):** \[ A = \begin{bmatrix} -7 & -72 & -18 \\ 1 & 17 & 5 \\ -4 & -72 & -21 \end{bmatrix} \] **Vectors in Basis \( B \):** \[ \mathbf{b_1} = \begin{bmatrix} -4 \\ 1 \\ -4 \end{bmatrix}, \quad \mathbf{b_2} = \begin{bmatrix} -4 \\ 1 \\ -4 \end{bmatrix}, \quad \mathbf{b_3} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix} \] **Solution:** Calculate the \( B \)-matrix based on the given transformation and basis. **Answer:** The \( B \)-matrix is \(\boxed{\phantom{answer}}\).
Expert Solution
steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,