Unless otherwise specified, assume that all matrices in these exercises are n xn. Determine which of the matrices in Exer- cises 1-10 are invertible. Use as few calculations as possible. Justify your answers.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please it's just review practice  number 2.3 number 8 not homework 

### 2.3 Exercises

**Instructions:** Unless otherwise specified, assume that all matrices in these exercises are \( n \times n \). Determine which of the matrices in Exercises 1–10 are invertible. Use as few calculations as possible. Justify your answers.

1. \[
   \begin{pmatrix}
   5 & 7 \\
   3 & 6
   \end{pmatrix}
   \]

2. \[
   \begin{pmatrix}
   4 & 2 \\
   6 & -3
   \end{pmatrix}
   \]

3. \[
   \begin{pmatrix}
   3 & 0 & 0 \\
   0 & 3 & 0 \\
   0 & 0 & -4
   \end{pmatrix}
   \]

4. \[
   \begin{pmatrix}
   2 & 0 & 0 \\
   0 & 6 & 0 \\
   7 & 0 & 9
   \end{pmatrix}
   \]

5. \[
   \begin{pmatrix}
   5 & 0 & 1 \\
   0 & 0 & 1 \\
   0 & 4 & 2
   \end{pmatrix}
   \]

6. \[
   \begin{pmatrix}
   1 & 0 & 0 \\
   0 & 3 & 0 \\
   0 & 6 & 9
   \end{pmatrix}
   \]

7. \[
   \begin{pmatrix}
   3 & 5 & 8 \\
   2 & 4 & 6 \\
   0 & 1 & 2
   \end{pmatrix}
   \]

8. \[
   \begin{pmatrix}
   0 & 4 & 7 & 4 \\
   0 & 0 & 5 & 8 \\
   1 & 0 & 7 & 4 \\
   2 & 0 & 6 & 5
   \end{pmatrix}
   \]

9. [Matrix image]

10. [Matrix image]

In Exercises 11 and 12, the matrices are all \( n \times n \).
Transcribed Image Text:### 2.3 Exercises **Instructions:** Unless otherwise specified, assume that all matrices in these exercises are \( n \times n \). Determine which of the matrices in Exercises 1–10 are invertible. Use as few calculations as possible. Justify your answers. 1. \[ \begin{pmatrix} 5 & 7 \\ 3 & 6 \end{pmatrix} \] 2. \[ \begin{pmatrix} 4 & 2 \\ 6 & -3 \end{pmatrix} \] 3. \[ \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -4 \end{pmatrix} \] 4. \[ \begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 7 & 0 & 9 \end{pmatrix} \] 5. \[ \begin{pmatrix} 5 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 4 & 2 \end{pmatrix} \] 6. \[ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 6 & 9 \end{pmatrix} \] 7. \[ \begin{pmatrix} 3 & 5 & 8 \\ 2 & 4 & 6 \\ 0 & 1 & 2 \end{pmatrix} \] 8. \[ \begin{pmatrix} 0 & 4 & 7 & 4 \\ 0 & 0 & 5 & 8 \\ 1 & 0 & 7 & 4 \\ 2 & 0 & 6 & 5 \end{pmatrix} \] 9. [Matrix image] 10. [Matrix image] In Exercises 11 and 12, the matrices are all \( n \times n \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Research Ethics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,