у" +2y' -зу Sh²+-1) y (o) = L {y" } + 2 α{y ¹³} −3 £ {y} = £ { $(+-1)} [S².Y(s) — 5. y/o) - y₁(6)] + 2 [S₁Y(s) - 410)] -3 [yrs] = y (s) 22+{s S [5².4₁5) -5=1] + 2[5.425)-1] −3 [yLs) = e-s S ycs) [5²+25 -3 ] −5 −3 = e-s = s 52 +25-3 + 5²+25-3 3 52 +25-3 }+36-151 f (S²+25-3) te + = 1₁ y ₁ (0) = 1 -s T 5²+25-3 e-s L {es. I (5²+25-3). 2 I t ¨ ( ²4/7 e ² + ²/ 0-²²) + 3 ( 4 ² ² -4e-²x) | H(+-1) (4e²+ - texans) _-3(+-1) -31 et 4 е че 个个 for 0² +
у" +2y' -зу Sh²+-1) y (o) = L {y" } + 2 α{y ¹³} −3 £ {y} = £ { $(+-1)} [S².Y(s) — 5. y/o) - y₁(6)] + 2 [S₁Y(s) - 410)] -3 [yrs] = y (s) 22+{s S [5².4₁5) -5=1] + 2[5.425)-1] −3 [yLs) = e-s S ycs) [5²+25 -3 ] −5 −3 = e-s = s 52 +25-3 + 5²+25-3 3 52 +25-3 }+36-151 f (S²+25-3) te + = 1₁ y ₁ (0) = 1 -s T 5²+25-3 e-s L {es. I (5²+25-3). 2 I t ¨ ( ²4/7 e ² + ²/ 0-²²) + 3 ( 4 ² ² -4e-²x) | H(+-1) (4e²+ - texans) _-3(+-1) -31 et 4 е че 个个 for 0² +
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Hello, could I get some help with understanding a differential equations question involving Laplace transforms, the heaviside function, and the dirac delta?
My work is attached, but I'm not understanding the second part of the solving process, when applying the inverse Laplace transform to yield an answer of et if 0 <= t < 1.
Thank you!
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,