Two speeding lead bullets, one of mass 12.0 g moving to the right at 300 m/s and one of mass 8.00 g moving to the left at 400 m/s, collide head-on, and all the material sticks together. Both bullets are originally at temperature 30.0°C. Assume the change in kinetic energy of the systemappears entirely as increased internal energy. We would like to determine the temperature and phase of the bullets after the collision. (a) What two analysis models are appropriate for the system of two bullets for the time interval from before to after the collision? (b) From one of these models,what is the speed of the combined bullets after the collision? (c) How much of the initial kinetic energy has transformed to internal energy in the system after the collision? (d) Does all the lead melt due to the collision? (e) What is the temperature of the combined bullets after the collision? (f) What is the phase of the combined bullets after the collision?
Kinetic Theory of Gas
The Kinetic Theory of gases is a classical model of gases, according to which gases are composed of molecules/particles that are in random motion. While undergoing this random motion, kinetic energy in molecules can assume random velocity across all directions. It also says that the constituent particles/molecules undergo elastic collision, which means that the total kinetic energy remains constant before and after the collision. The average kinetic energy of the particles also determines the pressure of the gas.
P-V Diagram
A P-V diagram is a very important tool of the branch of physics known as thermodynamics, which is used to analyze the working and hence the efficiency of thermodynamic engines. As the name suggests, it is used to measure the changes in pressure (P) and volume (V) corresponding to the thermodynamic system under study. The P-V diagram is used as an indicator diagram to control the given thermodynamic system.
Two speeding lead bullets, one of mass 12.0 g moving to the right at 300 m/s and one of mass 8.00 g moving to the left at 400 m/s, collide head-on, and all the material sticks together. Both bullets are originally at temperature 30.0°C. Assume the change in kinetic energy of the system
appears entirely as increased internal energy. We would like to determine the temperature and phase of the bullets after the collision. (a) What two analysis models are appropriate for the system of two bullets for the time interval from before to after the collision? (b) From one of these models,
what is the speed of the combined bullets after the collision? (c) How much of the initial kinetic energy has transformed to internal energy in the system after the collision? (d) Does all the lead melt due to the collision? (e) What is the temperature of the combined bullets after the collision? (f) What is the phase of the combined bullets after the collision?
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images