Two routes connect an origin-destination pair with performance functions t₁ = 5 + (x₁/2)² and t₂ = 7+ (x2/4)² (with t's in minutes and x's in thousands of vehicles per hour). It is known that at user equilibrium, 75% of the origin-destination demand takes route 1. What percentage would take route 1 if a system-optimal solution were achieved, and how much travel time would be saved?
Two routes connect an origin-destination pair with performance functions t₁ = 5 + (x₁/2)² and t₂ = 7+ (x2/4)² (with t's in minutes and x's in thousands of vehicles per hour). It is known that at user equilibrium, 75% of the origin-destination demand takes route 1. What percentage would take route 1 if a system-optimal solution were achieved, and how much travel time would be saved?
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
Related questions
Question
Two routes connect an origin-destination pair with performance functions t₁ = 5 + (x₁/2)² and t₂ = 7+ (x2/4)² (with t's in minutes and x's in thousands of vehicles per hour). It is known that at user equilibrium, 75% of the origin-destination demand takes route 1. What percentage would take route 1 if a system-optimal solution were achieved, and how much travel time would be saved?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning