Two rigid tanks are connected by a valve. Tank A is insulated and contains 0.3 m3 of steam at 400 kPa and 60 percent quality. Tank B is uninsulated and contains 2 kg of steam at 200 kPa and 250C. The valve is now opened, and steam flows from tank A to tank B until the pressure in tank A drops to 200 kPa. During this process, 300 kJ of heat is transferred from tank B to the surroundings at 17C. Assuming the steam remaining inside tank A to have undergone a reversible adiabatic process, determine (a) the final temperature in each tank and (b) the entropy generated during this process.
Two rigid tanks are connected by a valve. Tank A is insulated and contains 0.3 m3 of steam at 400 kPa and 60 percent quality. Tank B is uninsulated and contains 2 kg of steam at 200 kPa and 250C. The valve is now opened, and steam flows from tank A to tank B until the pressure in tank A drops to 200 kPa. During this process, 300 kJ of heat is transferred from tank B to the surroundings at 17C. Assuming the steam remaining inside tank A to have undergone a reversible adiabatic process, determine (a) the final temperature in each tank and (b) the entropy generated during this process.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Two rigid tanks are connected by a valve. Tank A
is insulated and contains 0.3 m3 of steam at 400 kPa and
60 percent quality. Tank B is uninsulated and contains 2 kg
of steam at 200 kPa and 250C. The valve is now opened,
and steam flows from tank A to tank B until the pressure
in tank A drops to 200 kPa. During this process, 300 kJ
of heat is transferred from tank B to the surroundings at
17C. Assuming the steam remaining inside tank A to have
undergone a reversible adiabatic process, determine (a) the
final temperature in each tank and (b) the entropy generated
during this process.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 24 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY