Q3 Consider a well-insulated horizontal rigid cylinder that is divided into two compartments by a piston that is free to move but does not allow either gas to leak into the other side. Initially, one side of the piston contains 1 m³ of N2 gas at 500 kPa and 80°C while the other side contains 1 m³ of He gas at 500 kPa and 25°C. Now thermal equilibrium is established in the cylinder as a result of heat transfer through the piston. Using constant specific heats at room temperature, determine the final equilibrium temperature in the cylinder. What would your answer be if the piston were not free to move? Neglect the mass of the piston 3 The gas constants and the constant volume specific hats are R = 0.2968 kPa.m /kg.K is c = 0.743 kJ/kg-°C for N₂, and R=2.0769 kPa.m /kg.K is c, = 3.1156 kJ/kg. °C for He 3 N₂ 1 m² 500 kPa 80°C He 1 m³ 3 500 kPa 25°C

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Q3 Consider a well-insulated horizontal rigid
cylinder that is divided into two compartments by a
piston that is free to move but does not allow either
gas to leak into the other side. Initially, one side of
the piston contains 1 m³ of N2 gas at 500 kPa and
80°C while the other side contains 1 m³ of He gas
at 500 kPa and 25°C. Now thermal equilibrium is
established in the cylinder as a result of heat transfer through the piston. Using constant specific
heats at room temperature, determine the final equilibrium temperature in the cylinder. What
would your answer be if the piston were not free to move? Neglect the mass of the piston
3
The gas constants and the constant volume specific hats are R = 0.2968 kPa.m /kg.K is c = 0.743
kJ/kg-°C for N₂, and R=2.0769 kPa.m /kg.K is c, = 3.1156 kJ/kg °C for He
3
3
N₂
1 m³
500 kPa
80°C
He
3
1 m³
500 kPa
25°C
Transcribed Image Text:Q3 Consider a well-insulated horizontal rigid cylinder that is divided into two compartments by a piston that is free to move but does not allow either gas to leak into the other side. Initially, one side of the piston contains 1 m³ of N2 gas at 500 kPa and 80°C while the other side contains 1 m³ of He gas at 500 kPa and 25°C. Now thermal equilibrium is established in the cylinder as a result of heat transfer through the piston. Using constant specific heats at room temperature, determine the final equilibrium temperature in the cylinder. What would your answer be if the piston were not free to move? Neglect the mass of the piston 3 The gas constants and the constant volume specific hats are R = 0.2968 kPa.m /kg.K is c = 0.743 kJ/kg-°C for N₂, and R=2.0769 kPa.m /kg.K is c, = 3.1156 kJ/kg °C for He 3 3 N₂ 1 m³ 500 kPa 80°C He 3 1 m³ 500 kPa 25°C
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Work and Heat
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY