Two players bargain over 1 unit of a divisible object. Bargaining starts with an offer of player 1, which player 2 either accepts or rejects. If player 2 rejects, then player 1 makes another offer; if player 2 rejects once more, then player 2 makes an offer. If player 1 rejects the offer of player 2, then once more it is the turn of player 1 where he makes two consecutive offers. As long as an agreement has not been reached this procedure continues. For example, suppose that agreement is reached at period 5, it follows that player 1 makes offers in period 1,2 then player 2 makes an o er in period 3, then player 1 makes offers in 4,5. Negotiations can continue indefinitely, agreement in period 't' with a division (x, 1- x) leads to payoffs ( , (1-x)). (The difference from Rubinstein's alternating offer bargaining is that player one makes two consecutive offers, whereas player 2 makes a single offer in her turn.) a. Show that there is a subgame perfect equilibrium in which player 2's payoff is b. Starting from a period in which player 2 is the proposer, show that the maximum subgame perfect equilibrium payoff for player 2 is
Two players bargain over 1 unit of a divisible object. Bargaining starts with an offer of player 1, which player 2 either accepts or rejects. If player 2 rejects, then player 1 makes another offer; if player 2 rejects once more, then player 2 makes an offer. If player 1 rejects the offer of player 2, then once more it is the turn of player 1 where he makes two consecutive offers. As long as an agreement has not been reached this procedure continues. For example, suppose that agreement is reached at period 5, it follows that player 1 makes offers in period 1,2 then player 2 makes an o er in period 3, then player 1 makes offers in 4,5. Negotiations can continue indefinitely, agreement in period 't' with a division (x, 1- x) leads to payoffs ( , (1-x)).
(The difference from Rubinstein's alternating offer bargaining is that player one makes two consecutive offers, whereas player 2 makes a single offer in her turn.)
a. Show that there is a subgame perfect equilibrium in which player 2's payoff is
b. Starting from a period in which player 2 is the proposer, show that the maximum subgame perfect equilibrium payoff for player 2 is
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images