Two identical centrifugal pumps connected in series are used to pump water between two storage tanks that are open to the atmosphere, through a cylindrical pipe with ID of 0.1 m on both the discharge and suction side. The total equivalent length on the suction and discharge sides are 20m and 40m respectively. The change in static head is 7m. Pump Data: Q( m3/s) 0 0.01 0.02 0.03 0.04 Δh (m) 23 21.5 18.5 11 3 Assume the friction factor f to be 0.02 and is constant throughout the range of flowrates. a) Determine the operating point of the system. b) Determine the power requirement for the pumping system if the pump efficiency is 75%.
Two identical centrifugal pumps connected in series are used to pump water between two storage tanks that are open to the atmosphere, through a cylindrical pipe with ID of 0.1 m on both the discharge and suction side. The total equivalent length on the suction and discharge sides are 20m and 40m respectively. The change in static head is 7m. Pump Data: Q( m3/s) 0 0.01 0.02 0.03 0.04 Δh (m) 23 21.5 18.5 11 3 Assume the friction factor f to be 0.02 and is constant throughout the range of flowrates. a) Determine the operating point of the system. b) Determine the power requirement for the pumping system if the pump efficiency is 75%.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
Two identical centrifugal pumps connected in series are used to pump water between two storage tanks that are open to the atmosphere, through a cylindrical pipe with ID of 0.1 m on both the discharge and suction side. The total equivalent length on the suction and discharge sides are 20m and 40m respectively. The change in static head is 7m.
Pump Data:
Q( m3/s) |
0 |
0.01 |
0.02 |
0.03 |
0.04 |
Δh (m) |
23 |
21.5 |
18.5 |
11 |
3 |
Assume the friction factor f to be 0.02 and is constant throughout the range of flowrates.
a) Determine the operating point of the system.
b) Determine the power requirement for the pumping system if the pump efficiency is 75%.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY