Two hangers are attached by a string to a vertically mounted pulley system as shown. One disk is bigger than the other, and the disks are attached to each other such that they rotate together. The axle has negligible friction. The mass of the large disk is 1200 grams and the radius is 11 cm. The mass of the small disk is 400 grams and the radius is 4 cm. The high hanger has a mass of 200 grams and starts 80 cm above the ground. The lower mass starts on the ground and has a mass of 100 grams. The hangers are released from rest. What is the velocity of the 200 gram hanger when it hits the floor?
Two hangers are attached by a string to a vertically mounted pulley system as shown. One disk is bigger than the other, and the disks are attached to each other such that they rotate together. The axle has negligible friction. The mass of the large disk is 1200 grams and the radius is 11 cm. The mass of the small disk is 400 grams and the radius is 4 cm. The high hanger has a mass of 200 grams and starts 80 cm above the ground. The lower mass starts on the ground and has a mass of 100 grams. The hangers are released from rest. What is the velocity of the 200 gram hanger when it hits the floor?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Two hangers are attached by a string to a vertically mounted pulley system as shown. One
disk is bigger than the other, and the disks are attached to each other such that they rotate
together. The axle has negligible friction. The mass of the large disk is 1200 grams and the radius is 11 cm. The mass of the small disk is 400 grams and the radius is 4 cm. The high hanger has a mass of 200
grams and starts 80 cm above the ground. The lower mass starts on the ground and has a
mass of 100 grams. The hangers are released from rest. What is the velocity of the 200
gram hanger when it hits the floor?

Transcribed Image Text:### Pulley System Diagram
**Description:**
The image depicts a simple pulley system used to lift weights. It consists of the following components:
- **Pulley Wheel:** Located at the top center of the diagram, the pulley allows the string or rope to move freely.
- **Support Structure:** A vertical support column is shown in blue underneath the pulley wheel. This provides stability to the system.
- **Weights:** There are two weights depicted as blue rectangles, one on each side of the pulley. They are suspended by strings running over the pulley wheel.
- **Strings:** Two green strings are connected to each weight, running over the pulley wheel.
**Purpose:**
This setup demonstrates a basic mechanical advantage, allowing for easier lifting of weights. Pulleys redirect the force applied, reducing the effort needed to lift heavy objects.
**Applications:**
Understanding pulley systems is fundamental in physics and engineering, especially in areas related to mechanics and machinery. They are widely used in construction, elevators, and various lifting devices.
### Educational Objective:
Study this diagram to enhance comprehension of mechanical systems and their real-world applications. Analyze how altering the weight or number of pulleys can impact the required input force.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 42 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON