Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 2.58 kg-m² about its central axis, is set spinning counterclockwise (which may be taken as the positive direction) at 140 rev/min. The second disk, with rotational inertia 7.60 kg-m² about its central axis, is set spinning counterclockwise at 941 rev/min. They then couple together. (a) What is their angular speed after coupling? If instead the second disk is set spinning clockwise at 941 rev/min, what are their (b) angular velocity (using the correct sign for direction) and (c) direction of rotation after they couple together? (a) Number i Units (b) Number i Units (c)
Two disks are mounted (like a merry-go-round) on low-friction bearings on the same axle and can be brought together so that they couple and rotate as one unit. The first disk, with rotational inertia 2.58 kg-m² about its central axis, is set spinning counterclockwise (which may be taken as the positive direction) at 140 rev/min. The second disk, with rotational inertia 7.60 kg-m² about its central axis, is set spinning counterclockwise at 941 rev/min. They then couple together. (a) What is their angular speed after coupling? If instead the second disk is set spinning clockwise at 941 rev/min, what are their (b) angular velocity (using the correct sign for direction) and (c) direction of rotation after they couple together? (a) Number i Units (b) Number i Units (c)
Related questions
Question
I don't understand the problem.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images