Two blocks are positioned on surfaces, each inclined at the same angle of 40.9 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 2.37 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.500. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at an acceleration of 1.5 m/s^2?     0.87 kg     22.68 kg     11.66 kg     0.96 kg

icon
Related questions
Question
  1. Two blocks are positioned on surfaces, each inclined at the same angle of 40.9 degrees with respect to the horizontal. The blocks are connected by a rope which rests on a frictionless pulley at the top of the inclines as shown, so the blocks can slide together. The mass of the black block is 2.37 kg, and the coefficient of kinetic friction for both blocks and inclines is 0.500. Assume static friction has been overcome and that everything can slide. What is must be the mass of the white block if both blocks are to slide to the LEFT at an acceleration of 1.5 m/s^2?
       
    0.87 kg
       
    22.68 kg
       
    11.66 kg
       
    0.96 kg
Ө
Ф
Transcribed Image Text:Ө Ф
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Nonconservative forces
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.