train_transform = # YOUR CODE FOR AUGMENTATIONS val_transform = # YOUR CODE FOR VALIDATION AUGMENTATIONS # HINT: TRAIN TRANSFORM OBVIOUSLY SHOULD BE HARDER THAN THOSE FOR VALIDATION train_dataset = FruitDataset("./train_zip/train", transform=train_transform) val_dataset = FruitDataset("./test_zip/test", transform=val_transform)       model = # YOUR CODE, CREATE MODEL FOR OBJECT DETECTION # HINT: YOU CAN USE torchvision.models AND torchvision.models.detection # READ OFFICIAL DOCS FOR MORE INFO optimizer = # SELECT YOUR OPTIMIZER train_dataloader = # CREATE YOUR DATALOADER, SELECT APPROPRIATE batch_size val_dataloader = # CREATE VALIDATION DATALOADER n_epochs = # SELECT APPROPRIZTE NUMBER OF EPOCHS device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") train(model, train_dataloader, val_dataloader, optimizer, device, n_epochs)   #https://colab.research.google.com/github/hse-aml/intro-to-dl-pytorch/blob/main/week03/SGA1_Object_Detection.ipynb

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
100%
train_transform = # YOUR CODE FOR AUGMENTATIONS
val_transform = # YOUR CODE FOR VALIDATION AUGMENTATIONS
# HINT: TRAIN TRANSFORM OBVIOUSLY SHOULD BE HARDER THAN THOSE FOR VALIDATION

train_dataset = FruitDataset("./train_zip/train", transform=train_transform)
val_dataset = FruitDataset("./test_zip/test", transform=val_transform)
 
 
 
model = # YOUR CODE, CREATE MODEL FOR OBJECT DETECTION
# HINT: YOU CAN USE torchvision.models AND torchvision.models.detection
# READ OFFICIAL DOCS FOR MORE INFO

optimizer = # SELECT YOUR OPTIMIZER
train_dataloader = # CREATE YOUR DATALOADER, SELECT APPROPRIATE batch_size
val_dataloader = # CREATE VALIDATION DATALOADER
n_epochs = # SELECT APPROPRIZTE NUMBER OF EPOCHS
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")

train(model, train_dataloader, val_dataloader, optimizer, device, n_epochs)
 
#https://colab.research.google.com/github/hse-aml/intro-to-dl-pytorch/blob/main/week03/SGA1_Object_Detection.ipynb
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Types of trees
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education