To test the quality of the work of a commercial laboratory, duplicate analyses of a purified benzoic acid (68.8% C, 4.953% H) sample were requested. It is assumed that the relative standard deviation of the method is sr → = 4 ppt for carbon and 6 ppt for hydrogen. The means of the reported results are 68.5% C and 4.882% H. At the 95% confidence level, is there any indication of systematic error in either analysis?
To test the quality of the work of a commercial laboratory, duplicate analyses of a purified benzoic acid (68.8% C, 4.953% H) sample were requested. It is assumed that the relative standard deviation of the method is sr → = 4 ppt for carbon and 6 ppt for hydrogen. The means of the reported results are 68.5% C and 4.882% H. At the 95% confidence level, is there any indication of systematic error in either analysis?
Principles of Instrumental Analysis
7th Edition
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Chapter11: Atomic Mass Spectrometry
Section: Chapter Questions
Problem 11.10QAP
Related questions
Question
To test the quality of the work of a commercial laboratory, duplicate analyses of a
purified benzoic acid (68.8% C, 4.953% H) sample were requested. It is assumed that the
relative standard deviation of the method is sr → = 4 ppt for carbon and 6 ppt for
hydrogen. The means of the reported results are 68.5% C and 4.882% H. At the 95%
confidence level, is there any indication of systematic error in either analysis?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Recommended textbooks for you
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning