To find the approximate P-value for any z statistic, compare z (ignoring its sign) with the critical value z* at the bottom of Table C. If z falls between two values of z*, the P-value falls between the two corresponding values of P in the "One-sided P" or the "Two-sided P" row of Table C. Example: "Is it statistically Significant?" The z-statistic for a one-sided test is z=2.13. How statistically significant is this result? Compare z=2.13 with the z* row in Table C z* 2.054 2.326 One-sided P 0.02 0.01 It lies between z* = 2.054 and z* = 2.326. So the P-value lies between the corresponding entries in the "One-sided P" row, which are P=0.02 and P=0.01. This z is statistically significant at the a=0.02 level and is not statistically significant at the a=0.01 level. Using the information above, answer the following question: 4 6-a) A test of Ho:µ = 0 against Ha: µ > 0 has test statistic z=1.65. Is this test statistically significant at the 5% level (a=0.05)? Is it statistically significant at the 1% (a=0.01)? 6-b) A test of Ho:µ = 0 against Ha:µ # 0 has test statistic z=1.65. Is this test statistically significant at the 5% level (a=0.05)? Is it statistically significant at the 1% (a=0.01)? TABLE C t distribution critical values degrees of Confidence level C freedom 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60 3 0.765 0.978 1.250 1.638 2.853 3.182 3.482 4.541 5.841 7.453 10.21 12.92 4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610 5 0.727 0.920 1.156 6 0.718 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869 0.906 1.184 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959 7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408 8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781 10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587 11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437 0.873 1.083 0.870 1.079 12 0.695 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318 13 0.694 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221 14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140 15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073 16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015 17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965 18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922 0.688 0.861 1.066 0.860 19 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883 20 0.687 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850 21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819 22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792 1.714 0.858 0,857 23 0.685 1.060 1.319 2.069 2.177 2.500 2.807 3.104 3.485 3.768 24 0.685 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745 25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725 26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707 27 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690 28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674 29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659 0.854 0.851 30 0.683 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646 40 0.681 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551 0.849 0.679 0.848 0.846 0:677-0.845-1.0421.290" 50 0.679 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496 60 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460 80 0.678 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416 100 1.660 1.984 2.081-2.364 2.626 2.871 3.174 3.390 0.842 1.037 1.282 1.646 1.645 1000 0.675 1.962 2.056 2.330 2.581 2.813 3.098 3.300 0.674 0.841 1.036 .15 1.282 1.960 2.054 2.326 2,576 2.807 3.091 3.291 One-sided P 25 20 10 .05 .025 .02 .01 .005 .0025 .001 .0005 Two-sided P 50 40 .30 20 .10 .05 .04 .02 .01 .005 .002 .001
To find the approximate P-value for any z statistic, compare z (ignoring its sign) with the critical value z* at the bottom of Table C. If z falls between two values of z*, the P-value falls between the two corresponding values of P in the "One-sided P" or the "Two-sided P" row of Table C. Example: "Is it statistically Significant?" The z-statistic for a one-sided test is z=2.13. How statistically significant is this result? Compare z=2.13 with the z* row in Table C z* 2.054 2.326 One-sided P 0.02 0.01 It lies between z* = 2.054 and z* = 2.326. So the P-value lies between the corresponding entries in the "One-sided P" row, which are P=0.02 and P=0.01. This z is statistically significant at the a=0.02 level and is not statistically significant at the a=0.01 level. Using the information above, answer the following question: 4 6-a) A test of Ho:µ = 0 against Ha: µ > 0 has test statistic z=1.65. Is this test statistically significant at the 5% level (a=0.05)? Is it statistically significant at the 1% (a=0.01)? 6-b) A test of Ho:µ = 0 against Ha:µ # 0 has test statistic z=1.65. Is this test statistically significant at the 5% level (a=0.05)? Is it statistically significant at the 1% (a=0.01)? TABLE C t distribution critical values degrees of Confidence level C freedom 50% 60% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8% 99.9% 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6 0.816 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33 31.60 3 0.765 0.978 1.250 1.638 2.853 3.182 3.482 4.541 5.841 7.453 10.21 12.92 4 0.741 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173 8.610 5 0.727 0.920 1.156 6 0.718 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893 6.869 0.906 1.184 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208 5.959 7 0.711 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785 5.408 8 0.706 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501 5.041 0.703 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297 4.781 10 0.700 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144 4.587 11 0.697 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025 4.437 0.873 1.083 0.870 1.079 12 0.695 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318 13 0.694 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852 4.221 14 0.692 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787 4.140 15 0.691 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733 4.073 16 0.690 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686 4.015 17 0.689 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646 3.965 18 0.688 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611 3.922 0.688 0.861 1.066 0.860 19 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579 3.883 20 0.687 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552 3.850 21 0.686 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527 3.819 22 0.686 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505 3.792 1.714 0.858 0,857 23 0.685 1.060 1.319 2.069 2.177 2.500 2.807 3.104 3.485 3.768 24 0.685 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467 3.745 25 0.684 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725 26 0.684 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435 3.707 27 0.684 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421 3.690 28 0.683 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408 3.674 29 0.683 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396 3.659 0.854 0.851 30 0.683 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385 3.646 40 0.681 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307 3.551 0.849 0.679 0.848 0.846 0:677-0.845-1.0421.290" 50 0.679 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261 3.496 60 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460 80 0.678 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416 100 1.660 1.984 2.081-2.364 2.626 2.871 3.174 3.390 0.842 1.037 1.282 1.646 1.645 1000 0.675 1.962 2.056 2.330 2.581 2.813 3.098 3.300 0.674 0.841 1.036 .15 1.282 1.960 2.054 2.326 2,576 2.807 3.091 3.291 One-sided P 25 20 10 .05 .025 .02 .01 .005 .0025 .001 .0005 Two-sided P 50 40 .30 20 .10 .05 .04 .02 .01 .005 .002 .001
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman