This table gives a probability that a statistic is less than Z (i.e. between negative infinity and Z). The values are calculated using the cumulative distribution function of a standard normal distribution with mean of zero and standard deviation of one, usually denoted with the capital Greek letter (phi), is the integral IP z/ (z) is related to the error function, or erf(z). (2) = V27 -0-

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
icon
Concept explainers
Question
Cumulative [ edit]
This table gives a probability that a statistic is less than Z (i.e. between negative infinity and Z).
The values are calculated using the cumulative distribution function of a standard normal distribution with mean of zero and standard deviation of one, usually denoted
with the capital Greek letter (phi), is the integral
(2) =
P z/-
(z) is related to the error function, or erf(z).
(2) =
+ erf
+0.00
+0.01
+0.02
+0.03
+0.04
+0.05
+0.06
+0.07
+0.08
+0.09
0.0 0.50000 0.50399 0.50798 0.51197 0,51595 0.51994 0.52392 0,52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0,55966 0.56360 0.56749 0.57142 0,57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.
497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.725750.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
Station 1
Station 2
Station 3
Station
Station 1
Station 2
Station 3
Average (Time)
10 minutes
25 minutes
20 minutes
StDev (Time)
2 minutes
5 minutes
4 minutes
Transcribed Image Text:Cumulative [ edit] This table gives a probability that a statistic is less than Z (i.e. between negative infinity and Z). The values are calculated using the cumulative distribution function of a standard normal distribution with mean of zero and standard deviation of one, usually denoted with the capital Greek letter (phi), is the integral (2) = P z/- (z) is related to the error function, or erf(z). (2) = + erf +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09 0.0 0.50000 0.50399 0.50798 0.51197 0,51595 0.51994 0.52392 0,52790 0.53188 0.53586 0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0,55966 0.56360 0.56749 0.57142 0,57535 0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409 0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173 0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793 0.5 0.69146 0. 497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240 0.6 0.725750.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490 0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524 0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327 0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891 1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214 Station 1 Station 2 Station 3 Station Station 1 Station 2 Station 3 Average (Time) 10 minutes 25 minutes 20 minutes StDev (Time) 2 minutes 5 minutes 4 minutes
(2) =
%3D
+0.00
+0.01
+0.02
+0.03
+0.04
+0.05
+0.06
+0.07
+0.08
+0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55966 0.56360 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.666400.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
Station 1
Station 2
Station 3
Station
Station 1
Station 2
Station 3
Average (Time)
10 minutes
25 minutes
20 minutes
StDev (Time)
2 minutes
5 minutes
4 minutes
Shown above is a process with three stations. Units of flow must complete a station before proceeding to the next station. What is the probability that the process is completed in 55 minutes
or less?
O 0.00
0.07
O 0.50
O 0.93
1.00
00000
Transcribed Image Text:(2) = %3D +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09 0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586 0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55966 0.56360 0.56749 0.57142 0.57535 0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409 0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173 0.4 0.65542 0.65910 0.66276 0.666400.67003 0.67364 0.67724 0.68082 0.68439 0.68793 0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240 0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490 0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524 0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327 0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891 1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214 Station 1 Station 2 Station 3 Station Station 1 Station 2 Station 3 Average (Time) 10 minutes 25 minutes 20 minutes StDev (Time) 2 minutes 5 minutes 4 minutes Shown above is a process with three stations. Units of flow must complete a station before proceeding to the next station. What is the probability that the process is completed in 55 minutes or less? O 0.00 0.07 O 0.50 O 0.93 1.00 00000
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON