This is the fourth part of a four-part problem. If the given solutions 7₁ (t) = [ 26² +6e-1]. 2e³t 3e3t +15e-t' 9 ÿ' = [15 form a fundamental set (i.e., linearly independent set) of solutions for the initial value problem ÿ(t) = (0)[, -4 -7 - 3e³t ₂ (t) = = ÿ, ÿ(0) 2e³t+6e7 impose the given initial condition and find the unique solution to the initial value problem. If the given solutions do not form a fundamental set, enter NONE in all of the answer blanks. +15e-t [4e³t +2e- 6e³t +5e-t + = [28] " [4e³t +2e-t 6est + 5e7
This is the fourth part of a four-part problem. If the given solutions 7₁ (t) = [ 26² +6e-1]. 2e³t 3e3t +15e-t' 9 ÿ' = [15 form a fundamental set (i.e., linearly independent set) of solutions for the initial value problem ÿ(t) = (0)[, -4 -7 - 3e³t ₂ (t) = = ÿ, ÿ(0) 2e³t+6e7 impose the given initial condition and find the unique solution to the initial value problem. If the given solutions do not form a fundamental set, enter NONE in all of the answer blanks. +15e-t [4e³t +2e- 6e³t +5e-t + = [28] " [4e³t +2e-t 6est + 5e7
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![This is the fourth part of a four-part problem.
If the given solutions
\[
\vec{y}_1(t) = \begin{bmatrix} 2e^{3t} + 6e^{-t} \\ 3e^{3t} + 15e^{-t} \end{bmatrix}, \quad \vec{y}_2(t) = \begin{bmatrix} 4e^{3t} + 2e^{-t} \\ 6e^{3t} + 5e^{-t} \end{bmatrix}.
\]
form a fundamental set (i.e., linearly independent set) of solutions for the initial value problem
\[
\vec{y}' = \begin{bmatrix} 9 & -4 \\ 15 & -7 \end{bmatrix} \vec{y}, \quad \vec{y}(0) = \begin{bmatrix} 8 \\ 28 \end{bmatrix},
\]
impose the given initial condition and find the unique solution to the initial value problem. If the given solutions do not form a fundamental set, enter NONE in all of the answer blanks.
\[
\vec{y}(t) = \begin{bmatrix} (\text{\_\_\_}) \begin{bmatrix} 2e^{3t} + 6e^{-t} \\ 3e^{3t} + 15e^{-t} \end{bmatrix} + (\text{\_\_\_}) \begin{bmatrix} 4e^{3t} + 2e^{-t} \\ 6e^{3t} + 5e^{-t} \end{bmatrix} \end{bmatrix}.
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F6890296c-2fc0-4a83-b66a-ee1a85d807a1%2F5a6a609e-d872-43d9-8df2-0d78766bd7fb%2F5v2cjs8_processed.jpeg&w=3840&q=75)
Transcribed Image Text:This is the fourth part of a four-part problem.
If the given solutions
\[
\vec{y}_1(t) = \begin{bmatrix} 2e^{3t} + 6e^{-t} \\ 3e^{3t} + 15e^{-t} \end{bmatrix}, \quad \vec{y}_2(t) = \begin{bmatrix} 4e^{3t} + 2e^{-t} \\ 6e^{3t} + 5e^{-t} \end{bmatrix}.
\]
form a fundamental set (i.e., linearly independent set) of solutions for the initial value problem
\[
\vec{y}' = \begin{bmatrix} 9 & -4 \\ 15 & -7 \end{bmatrix} \vec{y}, \quad \vec{y}(0) = \begin{bmatrix} 8 \\ 28 \end{bmatrix},
\]
impose the given initial condition and find the unique solution to the initial value problem. If the given solutions do not form a fundamental set, enter NONE in all of the answer blanks.
\[
\vec{y}(t) = \begin{bmatrix} (\text{\_\_\_}) \begin{bmatrix} 2e^{3t} + 6e^{-t} \\ 3e^{3t} + 15e^{-t} \end{bmatrix} + (\text{\_\_\_}) \begin{bmatrix} 4e^{3t} + 2e^{-t} \\ 6e^{3t} + 5e^{-t} \end{bmatrix} \end{bmatrix}.
\]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

