This exercise contains a while loop annotated with a pre- and a post-condition and also a loop invariant. Use the loop invariant theorem to prove the correctness of the loop with respect to the pre- and post-conditions. [Pre-condition: m is a positive integer, largest = A[1] and i = 1] while (i + m) 1. i := i+1 2. if Ali] > largest then largest :- A[i] end while [Post-condition: largest = maximum value of A[1], A[2], ... A[m]] loop invariant: I(n) is "largest = maximum value of A[1], A[2], .. A[n + 1] and i = n+ 1." Proof: 1. Basis Property: Select I(0) from the choices below. O largest = 0. O largest = the maximum value of A[1] and i = 1. O largest = the maximum value of A[1]. O largest = the maximum value of A[O + 1] and 0 + 1.
This exercise contains a while loop annotated with a pre- and a post-condition and also a loop invariant. Use the loop invariant theorem to prove the correctness of the loop with respect to the pre- and post-conditions. [Pre-condition: m is a positive integer, largest = A[1] and i = 1] while (i + m) 1. i := i+1 2. if Ali] > largest then largest :- A[i] end while [Post-condition: largest = maximum value of A[1], A[2], ... A[m]] loop invariant: I(n) is "largest = maximum value of A[1], A[2], .. A[n + 1] and i = n+ 1." Proof: 1. Basis Property: Select I(0) from the choices below. O largest = 0. O largest = the maximum value of A[1] and i = 1. O largest = the maximum value of A[1]. O largest = the maximum value of A[O + 1] and 0 + 1.
Computer Networking: A Top-Down Approach (7th Edition)
7th Edition
ISBN:9780133594140
Author:James Kurose, Keith Ross
Publisher:James Kurose, Keith Ross
Chapter1: Computer Networks And The Internet
Section: Chapter Questions
Problem R1RQ: What is the difference between a host and an end system? List several different types of end...
Related questions
Question
![This exercise contains a while loop annotated with a pre- and a post-condition and also a loop invariant. Use the loop invariant theorem to prove the
correctness of the loop with respect to the pre- and post-conditions.
[Pre-condition: m is a positive integer, largest = A[1] and i = 1]
while (i + m)
1. i := i +1
2. if A[i] > largest then largest := A[i]
end while
[Post-condition: largest = maximum value of A[1], A[2], ..., A[m]]
loop invariant: I(n) is "largest = maximum value of A[1], A[2],
A[n + 1] and i = n+ 1."
Proof: 1. Basis Property: Select I(0) from the choices below.
O largest = 0.
O largest = the maximum value of A[1] and i = 1.
O largest = the maximum value of A[1].
O largest = the maximum value of A[O + 1] and 0 + 1.
O largest = 1.
O largest =
According to the pre-condition
this statement is true.
Complete the proof by constructing proofs for each of the following: II. Inductive Property, III. Eventual Falsity of Guard, and IV. Correctness of the Post-
Condition. Submit your answer as a free response. (Submit a file with a maximum size of 1 MB.)
Choose File No file chosen](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fee9a8d9c-e0d7-484d-a7f1-66eab1606065%2Ff0052d8b-198b-4f89-b53c-bb27bbaee081%2F5cve3qb_processed.png&w=3840&q=75)
Transcribed Image Text:This exercise contains a while loop annotated with a pre- and a post-condition and also a loop invariant. Use the loop invariant theorem to prove the
correctness of the loop with respect to the pre- and post-conditions.
[Pre-condition: m is a positive integer, largest = A[1] and i = 1]
while (i + m)
1. i := i +1
2. if A[i] > largest then largest := A[i]
end while
[Post-condition: largest = maximum value of A[1], A[2], ..., A[m]]
loop invariant: I(n) is "largest = maximum value of A[1], A[2],
A[n + 1] and i = n+ 1."
Proof: 1. Basis Property: Select I(0) from the choices below.
O largest = 0.
O largest = the maximum value of A[1] and i = 1.
O largest = the maximum value of A[1].
O largest = the maximum value of A[O + 1] and 0 + 1.
O largest = 1.
O largest =
According to the pre-condition
this statement is true.
Complete the proof by constructing proofs for each of the following: II. Inductive Property, III. Eventual Falsity of Guard, and IV. Correctness of the Post-
Condition. Submit your answer as a free response. (Submit a file with a maximum size of 1 MB.)
Choose File No file chosen
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 1 images

Recommended textbooks for you

Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON

Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science

Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning

Computer Networking: A Top-Down Approach (7th Edi…
Computer Engineering
ISBN:
9780133594140
Author:
James Kurose, Keith Ross
Publisher:
PEARSON

Computer Organization and Design MIPS Edition, Fi…
Computer Engineering
ISBN:
9780124077263
Author:
David A. Patterson, John L. Hennessy
Publisher:
Elsevier Science

Network+ Guide to Networks (MindTap Course List)
Computer Engineering
ISBN:
9781337569330
Author:
Jill West, Tamara Dean, Jean Andrews
Publisher:
Cengage Learning

Concepts of Database Management
Computer Engineering
ISBN:
9781337093422
Author:
Joy L. Starks, Philip J. Pratt, Mary Z. Last
Publisher:
Cengage Learning

Prelude to Programming
Computer Engineering
ISBN:
9780133750423
Author:
VENIT, Stewart
Publisher:
Pearson Education

Sc Business Data Communications and Networking, T…
Computer Engineering
ISBN:
9781119368830
Author:
FITZGERALD
Publisher:
WILEY