Theorem 10 Every solution of Eq. (8) satisfies both of the following asymptotic relations Yn+1 lim n 00 Yn lim sup (lyn - y|)/" n 00 where je {1,... , k} and X; are the roots of characteristic equation (16). Proof. We get from Eq.(8): -- - (1+)-(1+) Yn Yn+1 Yn-m p(y + Yn-m) ý. Yn-m (Yn – 9) (Yn-m – 9) . | yn-m Set en = Yn - g. Therefore we have en+1 + Pnen + Anen-m 0, where p (y + Yn-m) , In Pn 2. Yn-m Due to the equilibrium point y of Eq.(8) is globally asymptotically stable, we get 2p lim Pn lim qn n 00 Hence, the limiting equation of Eq.(8) is the linearized equation (15). I

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Show me the steps of determine blue and inf is here

Hence we obtain the linearized equation of Eq.(8) about its unique positive
equilibrium point y as follow:
2p
Zn-m
= 0.
(15)
Zn+1
Therefore, the characteristic equation of Eq.(8) is
2p
0.
т
Am+1
(16)
Yn
Yn+1 = 1++p
(8)
Yn-m
..bone
B
.u. hendle the
inen og uetion (0)
The unigue
Transcribed Image Text:Hence we obtain the linearized equation of Eq.(8) about its unique positive equilibrium point y as follow: 2p Zn-m = 0. (15) Zn+1 Therefore, the characteristic equation of Eq.(8) is 2p 0. т Am+1 (16) Yn Yn+1 = 1++p (8) Yn-m ..bone B .u. hendle the inen og uetion (0) The unigue
Theorem 10 Every solution of Eq. (8) satisfies both of the following asymptotic
relations
Yn+1
lim
Ajl,
Yn – ỹ
n 00
lim sup (lyn – y|)/"
where j e {1,.. , k} and X; are the roots of characteristic equation (16).
Proof. We get from Eq.(8):
-9 - (1+)-(*)
Yn
1+P.2
Yn+1
n-m
p(y + Yn-m)
ý · Yn-m
(Yn–m – 9) .
(Yn – 9)
.2
yn-m
Set en = Yn – ỹ. Therefore we have
en+1 + Pnen + Inen-m = 0,
where
p(y + Yn-m)
In
Yn-m
,2
y· Yn-m
Pn
,2
Due to the equilibrium point j of Eq.(8) is globally asymptotically stable, we
get
2p
lim Pn
lim qn
Hence, the limiting equation of Eq.(8) is the linearized equation (15). -
Transcribed Image Text:Theorem 10 Every solution of Eq. (8) satisfies both of the following asymptotic relations Yn+1 lim Ajl, Yn – ỹ n 00 lim sup (lyn – y|)/" where j e {1,.. , k} and X; are the roots of characteristic equation (16). Proof. We get from Eq.(8): -9 - (1+)-(*) Yn 1+P.2 Yn+1 n-m p(y + Yn-m) ý · Yn-m (Yn–m – 9) . (Yn – 9) .2 yn-m Set en = Yn – ỹ. Therefore we have en+1 + Pnen + Inen-m = 0, where p(y + Yn-m) In Yn-m ,2 y· Yn-m Pn ,2 Due to the equilibrium point j of Eq.(8) is globally asymptotically stable, we get 2p lim Pn lim qn Hence, the limiting equation of Eq.(8) is the linearized equation (15). -
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,