Then, we assume that Wn+1 - H Wn - u kin+1 kn 1 2 E Wn-p E Wn-p p=0 p=1 (6) Zn+1 - € Zn - E Vn+1 Vn = 2 E žn-h h=0 h=1 Substituting (6) in (5), we have E Zn-h 1 kn-11 h=1 kn+1 Zn Vn (7) 2 Wn-p 1 = Vn-1. Vn+1 Wn - l kn Hence, we see that 1 ki = 1 V1 = ko wo - H 20 - € ko W-1 + w_2 Vo = Z-1 + 2-2 and at n = 1, k2 = ko and V2 = Vo, at n = 2, k3 = k1 and V3 = V1, at n = 3, k4 = ko and V4 = Vo, at n = 4, ks = k and V5 = V1, (8) at n = 2 n, k2n = ko and V2n = Vo, at n = 2n+ 1, k2n+1 = k1 and V2n+1 = V1. Now, from the relations in (6) we get Wn = u + kn (Wn-1 + Wn-2) and zn = € + Vn (žn-1 + Zn-2). (9) Using (8) in (9), we have W2n = H + ko (W2n-1 + W2n-2), W2n+1 = l + kı (w2n + W2n-1), (10) 22n = € + vo (22n-1 + 22n-2), 22n+1 = € +vi (22n + 22n-1). 介

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter10: Sequences, Series, And Probability
Section10.5: The Binomial Theorem
Problem 50E
icon
Related questions
Question

Show me steps of determine red and all information is here

In this paper, we solve and study the properties of the following system
E Wn-p
> Zn-h
Zn-h
Wn-P
p=0
h=1
p=1
h=0
Wn+1
+µ and zn+1
+ €,
(4)
Zn - €
Wn - H
where u and e are arbitrary positive real numbers with initial conditions w; and z; for i =
-2, –1,0.
Theorem 2.1. Let {wn, zn}-
be a solution of (4), then
n=-2
o+ V02 – 4 ko k1
$ - V62 – 4 ko k1
k1 + ko
w2n-2
+ B
+
2
2
ko – k1
n
$ + Vø2 – 4 ko k1
$+ Vø2 – 4 ko k1
0 - V02 – 4 ko k1
0 - Vo2 – 4 ko k1
1
A
ko
1
+ B
ko
w2n-1
- 1
- 1
2
2
+ (-) (는)-)
(1– ko + k1
1– k1 – ko
1
- 1
ko
+ V2 – 4 vo vi
1 – vị + vo
+
- V62
4 vo v1
22n-2
+ D
E,
2
2
- vo - v1
1
+ V2 – 4 vọ v1
b + V2 – 4 vo v1
e;2 – 4 vo v1
al2 - 4 vo vị
22n-1
C
+ D
- 1
2
2
2
+(G-) )-) .
1- vi + vo
1- vo - v1
E,
where A, B, C and D are constants defined as
wo - u
z-1 + z-2
ko
ki =
O = ko + k1 + ko k1,
w-1+ w-2
20 - E
20 - €
w-1 + w-2
v1 =
= vo + vi + vo v1,
2-1+ z-2
1 – Om
Vo2 – 4 ko k1
2 62 – 8 ko ki
1– k1 + ko
1 –
1 – kị + ko`
1 — ко — k1
A =
- 4 ko k1 – o) + 2 ( wo –
w-2 -
V62 – 4 ko ki
2 ф2 — 8 kо k1
1 – ko + k1
- ko – k1
(1 – kị + ko) µ)|,
1 – k1 – ko
B
u - w-2
62 – 4 ko k1 + ¢) +2 ( wo –
=
4 vo v1
2 2 – 8 vo v1
1- vi + vo
1- vị + vo
2-2 -
1- vo - vi
1- vo - vi
V2 – 4 vo vi
1 – vị + vo
1- v1 + vo
E - z-2
2 – 4 vo v1
+
+2
20 -
2 2 – 8 vo vi
- vO - v1
1- vo - v1
since ko + ki 1 and vo +v1 71 for n € N.
Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow
form
Zn-h
Wn-p
Wn+1 - H
h=1
Zn+1 - €
and
(5)
1
1
Zn - €
Wn - u
E Wn-p
> Zn-h
p=0
h=0
4
||
||
Transcribed Image Text:In this paper, we solve and study the properties of the following system E Wn-p > Zn-h Zn-h Wn-P p=0 h=1 p=1 h=0 Wn+1 +µ and zn+1 + €, (4) Zn - € Wn - H where u and e are arbitrary positive real numbers with initial conditions w; and z; for i = -2, –1,0. Theorem 2.1. Let {wn, zn}- be a solution of (4), then n=-2 o+ V02 – 4 ko k1 $ - V62 – 4 ko k1 k1 + ko w2n-2 + B + 2 2 ko – k1 n $ + Vø2 – 4 ko k1 $+ Vø2 – 4 ko k1 0 - V02 – 4 ko k1 0 - Vo2 – 4 ko k1 1 A ko 1 + B ko w2n-1 - 1 - 1 2 2 + (-) (는)-) (1– ko + k1 1– k1 – ko 1 - 1 ko + V2 – 4 vo vi 1 – vị + vo + - V62 4 vo v1 22n-2 + D E, 2 2 - vo - v1 1 + V2 – 4 vọ v1 b + V2 – 4 vo v1 e;2 – 4 vo v1 al2 - 4 vo vị 22n-1 C + D - 1 2 2 2 +(G-) )-) . 1- vi + vo 1- vo - v1 E, where A, B, C and D are constants defined as wo - u z-1 + z-2 ko ki = O = ko + k1 + ko k1, w-1+ w-2 20 - E 20 - € w-1 + w-2 v1 = = vo + vi + vo v1, 2-1+ z-2 1 – Om Vo2 – 4 ko k1 2 62 – 8 ko ki 1– k1 + ko 1 – 1 – kị + ko` 1 — ко — k1 A = - 4 ko k1 – o) + 2 ( wo – w-2 - V62 – 4 ko ki 2 ф2 — 8 kо k1 1 – ko + k1 - ko – k1 (1 – kị + ko) µ)|, 1 – k1 – ko B u - w-2 62 – 4 ko k1 + ¢) +2 ( wo – = 4 vo v1 2 2 – 8 vo v1 1- vi + vo 1- vị + vo 2-2 - 1- vo - vi 1- vo - vi V2 – 4 vo vi 1 – vị + vo 1- v1 + vo E - z-2 2 – 4 vo v1 + +2 20 - 2 2 – 8 vo vi - vO - v1 1- vo - v1 since ko + ki 1 and vo +v1 71 for n € N. Proof. To obtain the expressions of the general solutions for (4), we rewrite it in the follow form Zn-h Wn-p Wn+1 - H h=1 Zn+1 - € and (5) 1 1 Zn - € Wn - u E Wn-p > Zn-h p=0 h=0 4 || ||
Then, we assume that
Wn+1
Wn - l
kin+1
kn
1
2
> Wn-p
> Wn-p
p=0
p=1
(6)
Zn+1 - €
Zn - €
Vn+1 =
.nע
2
E zn-h
Zn-h
h=0
h=1
Substituting (6) in (5), we have
Zn-h
1
kn-1,
h=1
kin+1
Zn - €
Vn
(7)
> Wn-p
p=1
1
Vn+1
Vn-1·
Wn – l
kn
Hence, we see that
1
Vị
Vo
wo – µ
20 - €
ko
Vo
W-1+ w_2
k1
Z_1 + 2-2
ko
and
at n = 1, k2 = ko and
V2 = Vo,
at n = 2, k3 = k1 and
V3 = V1,
at n = 3, k4 = ko and
VĄ = Vo,
at n = 4, kz = k1 and
V5 = V1,
(8)
at n = 2 n, k2n
= ko
and
V2n = Vo,
at n = 2n + 1, k2n+1= k1 and
V2n+1 = Vi.
Now, from the relations in (6) we get
Wn =
u + kn (Wn-1+Wn-2
and zn = € + Vn (žn–1 + Zn-2).
(9)
Using (8) in (9), we have
W2n = µ + ko (W2n-1 + W2n-2),
W2n+1 = µ + kı (w2n + W2n-1),
(10)
%2n = €+ vo (22n–1+ %2n-2),
22n+1 = € + v1 (22n + 22n–1).
5
||
||
||
..
Transcribed Image Text:Then, we assume that Wn+1 Wn - l kin+1 kn 1 2 > Wn-p > Wn-p p=0 p=1 (6) Zn+1 - € Zn - € Vn+1 = .nע 2 E zn-h Zn-h h=0 h=1 Substituting (6) in (5), we have Zn-h 1 kn-1, h=1 kin+1 Zn - € Vn (7) > Wn-p p=1 1 Vn+1 Vn-1· Wn – l kn Hence, we see that 1 Vị Vo wo – µ 20 - € ko Vo W-1+ w_2 k1 Z_1 + 2-2 ko and at n = 1, k2 = ko and V2 = Vo, at n = 2, k3 = k1 and V3 = V1, at n = 3, k4 = ko and VĄ = Vo, at n = 4, kz = k1 and V5 = V1, (8) at n = 2 n, k2n = ko and V2n = Vo, at n = 2n + 1, k2n+1= k1 and V2n+1 = Vi. Now, from the relations in (6) we get Wn = u + kn (Wn-1+Wn-2 and zn = € + Vn (žn–1 + Zn-2). (9) Using (8) in (9), we have W2n = µ + ko (W2n-1 + W2n-2), W2n+1 = µ + kı (w2n + W2n-1), (10) %2n = €+ vo (22n–1+ %2n-2), 22n+1 = € + v1 (22n + 22n–1). 5 || || || ..
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Algebra: Structure And Method, Book 1
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell