The z-axis is the symmetry axis of a very long cylinder of radius a, made from dielectric material of relative permittivity ɛ = KE0. The cylinder carries a free surface charge density Ofree = Orocosp. The electric field inside and outside the cylinder is of the form Ein = -A¡i = -A1cosp (p/p) + A,sinp (p/p), Eout = (A2cosp (p/p) + Azsino (p/p))/p?. Use the boundary conditions conditions for E and D to find the polarization P of the cylinder in terms of K and ofo

icon
Related questions
Question
1
The z-axis is the symmetry axis of a very long cylinder of radius a, made from dielectric material of relative permittivity ɛ = Kɛo. The
cylinder carries a free surface charge density Ofree = Ofocosp. The electric field inside and outside the cylinder is of the form
Ein = -A1i = -A, cosp (p/p) + A,sino (4/p),
Eout = (A2cosp (p/p) + A2sino (p/p))/p².
Use the boundary conditions conditions for E and D to find the polarization P of the cylinder in terms of K and ofo
a
Transcribed Image Text:The z-axis is the symmetry axis of a very long cylinder of radius a, made from dielectric material of relative permittivity ɛ = Kɛo. The cylinder carries a free surface charge density Ofree = Ofocosp. The electric field inside and outside the cylinder is of the form Ein = -A1i = -A, cosp (p/p) + A,sino (4/p), Eout = (A2cosp (p/p) + A2sino (p/p))/p². Use the boundary conditions conditions for E and D to find the polarization P of the cylinder in terms of K and ofo a
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer