The wear resistance of a steel gear is to be improved by hardening its surface. This is to be accomplished by increasing the carbon content within an outer surface layer as a result of carbon diffusion into the steel; the carbon is to be supplied from an external carbon-rich gaseous atmosphere at an elevated and constant temperature. The initial carbon content of the steel is 0.20 wt%, whereas the surface concentration is to be maintained at 1.00 wt%. For this treatment to be effective, a carbon content of 0.60 wt% must be established at a position 0.75 mm below the surface. Specify an appropriate heat treatment in terms of temperature and time for temperatures between 900 0C and 1050 0C (you may select any 3 temperatures). For the diffusion of carbon in steel, D0 = 2.3 x 10-5 m2 /s, Q = 148 kJ/mol. (The error function values are given below)

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

The wear resistance of a steel gear is to be improved by hardening its surface. This is to
be accomplished by increasing the carbon content within an outer surface layer as a result of
carbon diffusion into the steel; the carbon is to be supplied from an external carbon-rich gaseous
atmosphere at an elevated and constant temperature. The initial carbon content of the steel is
0.20 wt%, whereas the surface concentration is to be maintained at 1.00 wt%. For this treatment
to be effective, a carbon content of 0.60 wt% must be established at a position 0.75 mm below
the surface.
Specify an appropriate heat treatment in terms of temperature and time for temperatures
between 900 0C and 1050 0C (you may select any 3 temperatures). For the diffusion of carbon
in steel, D0 = 2.3 x 10-5 m2

/s, Q = 148 kJ/mol. (The error function values are given below)

Q13. The wear resistance of a steel gear is to be improved by hardening its surface. This is to
be accomplished by increasing the carbon content within an outer surface layer as a result of
carbon diffusion into the steel; the carbon is to be supplied from an external carbon-rich gaseous
atmosphere at an elevated and constant temperature. The initial carbon content of the steel is
0.20 wt%, whereas the surface concentration is to be maintained at 1.00 wt%. For this treatment
to be effective, a carbon content of 0.60 wt% must be established at a position 0.75 mm below
the surface.
Specify an appropriate heat treatment in terms of temperature and time for temperatures
between 900 °C and 1050 °C (you may select any 3 temperatures). For the diffusion of carbon
in steel, Do = 2.3 x 10$ m²/s, Q = 148 kJ/mol. (The error function values are given below)
erf(z)
erf(z)
erf(z)
0.55
0.5633
1.3
0.9340
0.025
0.0282
0.60
0.6039
1.4
0.9523
0.05
0.0564
0.65
0.6420
1.5
0.9661
0.10
0.1125
0.70
0.6778
1.6
0.9763
0.15
0.7112
0.7421
0.1680
0.75
1.7
0.9838
0.20
0.2227
0.80
1.8
0.9891
0.25
0.2763
0.85
0.7707
1.9
0.9928
0.30
0.3286
0.90
0.7970
2.0
0.9953
0.35
0.3794
0.95
0.8209
2.2
0.9981
0.40
0.4284
1.0
0.8427
2.4
0.9993
0.8802
0.9103
0.45
0.4755
1.1
2.6
0.9998
0.50
0.5205
1.2
2.8
0.9999
Transcribed Image Text:Q13. The wear resistance of a steel gear is to be improved by hardening its surface. This is to be accomplished by increasing the carbon content within an outer surface layer as a result of carbon diffusion into the steel; the carbon is to be supplied from an external carbon-rich gaseous atmosphere at an elevated and constant temperature. The initial carbon content of the steel is 0.20 wt%, whereas the surface concentration is to be maintained at 1.00 wt%. For this treatment to be effective, a carbon content of 0.60 wt% must be established at a position 0.75 mm below the surface. Specify an appropriate heat treatment in terms of temperature and time for temperatures between 900 °C and 1050 °C (you may select any 3 temperatures). For the diffusion of carbon in steel, Do = 2.3 x 10$ m²/s, Q = 148 kJ/mol. (The error function values are given below) erf(z) erf(z) erf(z) 0.55 0.5633 1.3 0.9340 0.025 0.0282 0.60 0.6039 1.4 0.9523 0.05 0.0564 0.65 0.6420 1.5 0.9661 0.10 0.1125 0.70 0.6778 1.6 0.9763 0.15 0.7112 0.7421 0.1680 0.75 1.7 0.9838 0.20 0.2227 0.80 1.8 0.9891 0.25 0.2763 0.85 0.7707 1.9 0.9928 0.30 0.3286 0.90 0.7970 2.0 0.9953 0.35 0.3794 0.95 0.8209 2.2 0.9981 0.40 0.4284 1.0 0.8427 2.4 0.9993 0.8802 0.9103 0.45 0.4755 1.1 2.6 0.9998 0.50 0.5205 1.2 2.8 0.9999
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY